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Accuracy matters*

MASS SPECTROMETRIC DATA PROCESSING

by Luke V. Schneider

Mass spectrometry is an analytical chemistry tool used for the separation of
molecular ions by their mass, more properly their mass-to-charge ratio (m/z), and the
quantification of their relative abundance in an ion stream. For convenience, “mass” will
be used as shorthand for m/z herein, except where specific m/z terminology will be more
helpful.

Like any tool there are correct or optimal ways to use it, and there are many
incorrect ways that people have found to misuse this tool, resulting in corrupted or
inferior information obtained from it in the process. In the following series of articles, we
attempt to describe the best practices for the analysis of mass spectrometric data.

The mass spectrometer provides a measurement in terms of mass and
abundance of the molecular ions in a stream of such ions. In any analytical method, one
must distinguish the precision (the intrinsic reproducibility of the measurement) from the
accuracy of the result (how well do the peak mass and abundance agree with the true
values). Precision of the measurement is affected by chemical and instrument noise,
fluctuations in room temperature, and by the digital sampling frequency and any non-
linearities of the detector. Accuracy depends on how well the instrument has been
calibrated, but may never be better (tighter) than the inherent precision of the
measurement.

1. PROPERTIES OF MASS SPECTROMETRIC DATA

The primary (raw) profile spectral data produced by the mass spectrometer data
acquisition software—quantized mass and abundance data pairs that represent the
sampled distribution of molecular ions inside the mass analyzer—is fundamentally the
same in all mass analyzers. The attributes of that raw (profile) data differ by the type of
mass analyzer. These differences are highlighted in the section on Spectral
Characteristics and can have a critical impact on the processing of the raw spectral data.

2. DATA ANALYSIS PROCESS

While the nature of the primary data generated is the same (mass and
abundance), the goals of the analysis (i.e., how this data will be used) may be quite
varied. However, the initial steps in this process are common to all downstream
analyses and uses of mass spectral data. The first goal in all subsequent uses for the
data is to identify within the raw (profile) data the discrete mass and abundance peaks
associated with each analyte and their relative abundances that are present within the
sample (i.e., converting the profile spectrum into a mass list of peaks).

As shown in Figure 2.1 below, there are several discrete steps involved in
converting the profile spectrum into a mass list, and many pieces of metadata about the
mass spectrum that can and should be collected during this data analysis process,
which can prove useful to improve the precision of the resulting mass list. It should be
emphasized that precision is all that matters in this process. Accuracy correction, which
generally depends on external calibration of the mass spectrometer, is properly applied
to the final mass list, not to the profile spectrum.

In these documents, we present the general alternatives used for each step of
the process, along with their advantages and limitations. We also provide
recommendations for the best practices that should be followed to improve the precision
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and sensitivity of the resulting mass list, and to collect the relevant metadata about the
spectrum that can assist in defining how well the final result is known or understood.
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Figure 2.1. “Best Practice” steps in the process for converting raw (profile) mass
spectrometric data into a mass list optimized for subsequent uses and
analysis. Each of the steps of this process are detailed in subsequent
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sections of this document series. Those in red are background
reference documents

3. SPECTRAL DATA COMPRESSION AND DECOMPRESSION

Data Compression

Mass spectral data is stored as mass and abundance data pairs in a data file.
Most instrument manufacturers automatically compress this data file to save storage
space and the amount of data that must be transferred from the instrument to the
analysis software. The methods employed to compress the spectral data files include:

* retention of only significant digits from values (e.g., quantifying a mass
to just four instead of six or more decimal places, and rounding
abundances off to the nearest integer value)

* conversion of the data to binary formats

* removal of any points with zero counts (or counts below a user-
specified threshold)

* removal of any points with constant abundance between the two
anchor values at the edges of the constant range.

Retained Significant Figures

Most of these data compression techniques are reversible, except for significant
figure truncation and the elimination of data below a user-specified threshold value.
When the relevant and appropriate number of significant figures are maintained in the
mass and abundance values, the data lost is typically insignificant. However, this
rounding or truncation error can still cause variation in the estimation of the intrinsic
mass spacing (IMS), which must be taken into account during data decompression (see
below).

Thresholding

With the exception of FT-ICR absorption spectra, which have been re-registered
to a median abundance of zero counts, there is no data below zero abundance in mass
spectra. Therefore, zero removal is not considered data destructive. However, when a
non-zero, user-specified, minimum threshold is applied, all data between that value and
the true zero is permanently lost, which creates issues for downstream spectral
processing, and should always be avoided during original data acquisition and archiving.

Data Point Compression

Removing zero abundance points or using a variant of the Lempel-Ziv-Welch
(LZW) compression technique' to remove constant values between two anchor points,
are both non-destructive compression techniques utilized in mass spectrometry.
However, since both methods are in common practice by different instrument vendors, it
may not be clear which method has been applied on a spectrum from an unknown
source (see below).

Binary File Conversion

Lempel-Ziv-Welch File compression, https://en.wikipedia.org/wiki/Lempel-Ziv—
Welch (accessed 23 June 2016).
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Binary data can typically be converted to more readable formats using
MSConvert? or other open-source MS file conversion software. All vendors have
released proprietary .dll files into open-source use for this purpose. However, these
libraries do not typically replace data points removed by zero drop or LZW compression
schemes. The reversal of binary data formats is beyond the scope of this paper.

Spectral Data Decompression
Importance of Decompression

When mass spectral data files are compressed, information and statistical
degrees of freedom are lost. For example, the average counts in the mass spectrum
shown in Figure 3.1 changes from 9.48 in the LZW-compressed version (87,707 data
points) to 3.71 in the fully-decompressed version (178,402 data points). Using the
correct lower average counts as a threshold before centroiding, 67.3% more peaks are
detected in this spectrum. The elimination of over 50% of the data points by LZW
compression resulted in 67.3% of the peaks going undetected, because the threshold is
not calculated correctly with those points missing.
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Figure 3.1. The CID fragmentation spectrum of the 2+ charge state of the peptide

NQGPQESVVR from a Waters Q-TOF Premier mass spectrometer.
There are 35,005 missing data points in the LZW-compressed file.
When these points are returned to the spectral file, the average counts
drop from 9.48 to 3.71. Using the average counts from the compressed
spectrum as a peak detection threshold, 67.3% of the total peaks would
remain undetected in the compressed data file.

2 MSConvert software, http://proteowizard.sourceforge.net/tools.shtml
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Intrinsic Mass Spacing

The keys to any mass spectral data decompression are to determine:
* when a data point has been removed.

* the mass value of the point(s) to be replaced.

* the abundance value of the point(s) being replaced.

The most critical step is to determine the intrinsic mass spacing for the spectrum.
The masses in each type of mass analyzer are set on a periodic spacing.3 This intrinsic
mass spacing (IMS) between data points is readily determined from the mass spacing in
the spectrum itself. For example, in the TOF spectrum above (Figure 3.1), the distance
between mass points is expected to be constant on a mass to the half power basis (i.e.,
Am/z%®). This is shown in Figure 3.2.
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Figure 3.2. The intrinsic mass spacing of the TOF spectrum from Figure 3.1 on a

Am/z%5 basis. The average IMS is 1.85 x 10 Da%5, as represented by
the lowest set of data points. Each line above that reflects a larger gap
in mass spacing, indicating missing data points in the compressed
spectrum. The multiple of the IMS (minus one) indicates the number of
such missing points in that mass gap. The scatter about the average
IMS is caused by truncation error in the mass values (another data
compression mechanism).

Similar IMS graphs can be generated for the compressed spectral data from
each mass analyzer type, but reflecting different powers for the mass calculation

3 see section on Spectral Characteristics
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(Table 3.1). The mass points in an ion trap analyzer are evenly spaced in m/z (Am/z,
Da). Orbitrap mass data is evenly spaced on the reciprocal of the square root of the m/z
spacing (Am/z°°, Da®®). FT-ICR mass data is evenly spaced on the reciprocal of the
m/z spacing (Am/z”", Da™).

Mass Analyzer Calculation Units
lon trap Am/z = [(m/z)i+1 — (m/z)J Da
Time-of-Flight Am/2%5 = {(m/Z)?fl _ (m/z)?‘ﬂ Da0s
Orbitrap Am/z""° = [(771/2)7:_0'5 - (m/z);fiS] Date
FT-CR Amfz™h = (/27 = (mf2)y] | P

Table 3.1:  Intrinsic Mass Spacing (IMS) for different types of mass analyzers.
Mass Position of Decompressed Data Points

Armed with a knowledge of the IMS for the spectrum, it is possible to detect
compression gaps by looking for any adjacent mass values that differ by more than 1.5
times the expected IMS for their position in the spectrum. Furthermore, by dividing the
Am/Z"* for each gap by the IMS calculated for the spectrum, and rounding to the nearest
integer, the number of missing data points in each gap is readily determined. Itis then a
simple matter to add that number of mass values back into the spectrum in equally-
spaced increments in the proper (Am/z*) domain for the mass analyzer.

Abundance Value of the Decompressed Data Points

The last piece of information needed is the correct abundance value for each
decompressed point. As described above, there are two basic types of data
compression schemes. The first is zero removal. The second is characterized by
anchor points of equal abundance that span the missing points gap. By checking the
abundance values on either side of all identified mass gaps in the spectral data, the
specific type of compression can ascertained.

Once all zero abundance values have been removed from a dataset, the
remaining data may by sheer chance have equal nonzero abundance values on either
side of the corresponding mass gap, effectively making that gap indistinguishable from a
LZW compression gap. Therefore, a zero removal compression scheme can only be
robustly identified where at least one mass gap within the spectral data set contains non-
equivalent abundances on either side of the data gap. An LZW type compression
scheme is only robustly identified when both sides of all mass gaps have identical
abundances.

Orbitrap instruments are manufactured by a single supplier, and they always
utilize only the zero removal type of data compression.

4. SPECTRAL CHARACTERISTICS

A mass spectrum reports the measured mass to charge (m/z) ratio of molecular
ions, generally by transforming the true detector signal data captured in the time domain,
via calibration to yield final results in the m/z domain. Since the charge of any given
spectral peak can only be determined from its isotopic pattern of peaks, it is common to
refer to the m/z as the mass when talking about isolated peaks and mass range when
talking about the range of masses that are represented in a mass spectrum.

In reality, therefore, a mass spectrum is built from the measured number of ion
detection events counted in each detection bin, with a bin consisting of a slice of
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detection time or frequency. The detection bins are then mapped to the mass-to-charge
(m/z) or mass range through the use of mass standards (molecular ions with known m/z
peaks). Since a single molecular ion may be tracked across multiple detector bins, the
m/z mapping of the spectrum on the ordinate (x-axis) is at best approximate, and
ultimately depends on the care taken to locate the underlying apex of the distribution of
each molecular ion across multiple bins.

Detectors have duty cycles that prevent capture of all ion detection opportunities,
but they can also amplify detection events. Furthermore, only molecules that are ionized
can be detected. Therefore, counts along the abscissa (y-axis) must also be calibrated
before they can be used to quantitate the concentration of the molecules generating
them.

Ordinate (x-axis)

The size of (or spacing between) detector bins is constant along the x-axis in the
acquisition time or frequency domain. However, the correlation of spacing between
these time points and the mass to charge (m/z) ratio of the ions varies depending on the
analyzer type. Understanding the inherent correlation between the detector bin spacing
and the range of m/z represented by each detector bin is critical for proper downstream
processing of the spectrum, since it affects the width of each ion peak in mass units (i.e.,
the mass resolving power of the spectrum at any given m/z). It also determines the
limiting mass precision of any m/z or mass call, which can be no more precise than the
width of a detector bin at that mass value. Mass accuracy, which is distinguished from
precision in analytical chemistry, is ultimately limited by the accuracy with which detector
time bins are mapped to the mass domain in the final spectrum.

There are also several traditional mass resolution measures that are useful for
characterizing what a mass analyzer is capable of separating. Resolution (a
dimensionless number) is typically defined by the mass divided by the full peak width at
half of its maximum height (PWHH) in m/z. The inverse of PWHH Resolution is typically
presented as parts per million (ppm) precision (i.e., an approximation of the mass
difference at which a mass analyzer is expected resolve two nearly isobaric species as
separate peaks with half the peak heights of each being non-overlapping). The final
resolution measure is the peak width at half height in Da. One of more of these
measures may be constant for any given mass analyzer.

lon Trap

The detector bin spacing in ion trap analyzers is linearly proportional to m/z. This
means that every unit distance in an ion trap spectrum represents the same fraction
(Am/z slice) of the mass range of the spectrum. If there are 1000 points in the spectrum
covering a 100 Da range in mass, each point represents a Am/z slice of 0.1 Da, which
corresponds to the minimum precision with which the mass of any molecular ion could
be determined . If the mass range of the spectrum is reduced to 50 Da for the same
sampling speed (i.e., 1000 points), then each point represents a Am/z slice of 0.05 Da,
or double the mass precision of the 100 Da range. A consequence of this direct
proportionality between detector bins and m/z is that the resulting peak widths are nearly
constant with m/z in ion trap spectra (Figure 4.1). However all other common measures
of resolution vary with m/z in ion trap spectra.
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Figure 4.1: Two isolated peaks from different m/z ranges in the same ion trap

spectrum of peptide fragments (a and b). Peak widths are constant in
the m/z and detector bin domains, but the calculated resolutions (peak
width at half height) vary in all dimensions except Am/z.

Time-of-Flight (TOF)

The detector bin spacing in TOF analyzers is proportional to the square root of
the m/z ([m/z]*°). This means that every successive point in a TOF spectrum represents
a larger fraction of the mass range than every preceding point. The limiting precision in
Am/z, therefore, depends on the mass being measured, but is constant on mass to the
half power (mass®®). It also means that the peak width gets progressively wider with
increasing m/z by all resolution measures except ppm (Figure 4.2).

© 2016 Veritomyx, Inc., All Rights Reserved



2004t WU L 2000--+siiri S T
Peak Width: Peak Width:

base-to-base = 15 bins (0.084 Da)| base-to-base = 27 bins (0.334 Da)|
half-height = 5.7 bins (0.032Da) half-height = 10.5 bins (0.13 Da)
Resolution L Resolution
PWHH = 9692 PWHH = 9850
103 ppm I 102 ppm
150+ +0.016 Da 3 1500+ +0.065 Da -

1004 3 10004 3

Counts
Counts

50- - 500- -

OH——ette——ote. ey “ Oovesaeted X S tese

310 3101 3102  310.3 1280.4  1280.6 128058 1281

m/z (Da) (a) m/z (Da) (b)
Figure 4.2: Two isolated peaks from different m/z ranges of the same TOF
spectrum of peptide fragments (a and b). Peak widths increase with
m/z, but the calculated resolution is constant by all measures but
+Am/z. The inherent limiting mass precision, however, is constant at
the bin spacing of 0.0001793 Da?5.

Orbitrap

The bin spacing in Orbitrap analyzers is proportional to the inverse square root of
the m/z ([m/z]*®°). This means that every successive unit distance in an Orbitrap
spectrum represents a larger fraction of the mass range than every preceding unit
distance. The limiting precision in Am/z, therefore, depends on the mass being
measured, but is constant versus the reciprocal of that mass to the half power (mass™®®).
It also means that the peak width gets progressively wider with increasing mass, yet is
roughly constant on the basis of number of detector bins (Figure 4.3).
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Figure 4.3: Two isolated peaks from different m/z ranges of the same Orbitrap

spectrum of peptides (a and b). Peak widths increase with m/z, but are
constant in terms of the number of detector bins or mass?5. The
calculated resolution varies by all measures. The inherent limiting mass
precision, however, is constant at the bin spacing of 6.71 x 10-¢ Da05.

Fourier Transform-lon Cyclotron Resonance (FT-ICR)

The bin spacing in FT-ICR spectra is proportional to the inverse of the m/z
(Im/z]"). This means that every successive unit distance in an FT-ICR spectrum
represents a larger fraction of the mass range than every preceding unit distance.
Therefore, the limiting precision in Am/z, depends on the mass being measured, but is
constant versus the reciprocal of that mass (mass™). It also means that the peak width
gets progressively wider with increasing m/z and that there is no conventional
autoscaling approach to resolution that remains roughly constant across this type of
mass spectrum (Figure 4.4).
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Figure 4.4: Two isolated peaks from different m/z ranges of the same FT-ICR

spectrum of crude oil (a and b). Peak widths increase with m/z and
decrease in number of points. The calculated resolution varies by all
measures. The inherent limiting mass precision, however, is constant
at a bin spacing of 6.71 x 10 Da™!

Abscissa (y-axis)

The relative signal strength of the ions measured by the detector within each
Am/z packet (detector bin) is the fundamental quantity represented along the abscissa of
a mass spectrum. It is important to understand that different types of ions “fly” or are
transported with different overall efficiencies through the mass spectrometer, and thus
may generate different signal strengths at the detector. Second, the duty cycle of the
analyzer (i.e., how much time it is devoted to detecting ions of a given mass) affects the
signal strength registered. Third, the electronic gain of the detector (or residence time in
an ICR cell) affects both the noise accumulated in the spectrum and the number of
counts generated for a given molecule. Fourth, interferences due to ion density for ions
circulating in an ICR cell, or due to the dead time of an MCP detector following each
detection-event collision, can thwart quantitative detection of molecular ions. Finally, the
ionization efficiency of the analyte itself plays a huge role in determining how the counts
detected by the analyzer correlate to the actual concentration of the un-ionized parent
molecule in the original sample.

Unlike most analytical techniques, both chemical and instrument noise are
always positive in a mass analyzer. This severely limits the application of normal
parametric statistical methods to mass spectra and makes peak detection, quantification,
and discrimination very difficult. Therefore, the relative abundance of mass spectral
peaks, particularly relative to stable isotope analogs (spiked or endogenous) become
more useful tools for mass spectral analysis than the actual abundance of any given
species.
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5. SPECTRAL BASELINING

The Instrument-Specific Nature of Mass Spectral Baselines
lon Trap and TOF Spectra

In mass analyzers using MCP detectors, the collision of an ion with the detector
generates a signal, but signals may be generated by the intended analyte and by other
molecular ions of the same nominal m/z (e.g., ion fragments produced during the
ionization process from other analytes, ions contaminating the sample from the matrix,
multiply charged or isotopic ions of other species in the sample, etc.). The detector itself
also generates random noise, the amount of which depends on the operating
parameters (e.g., gain and temperature) and age. Because molecular ions are
destroyed at the surface of the MCP detector, there is a residue accumulation over time.

Noise (both chemical and instrumental) is always positive in a mass spectrum.
This means: 1) that it is additive and raises the effective spectral baseline when multiple
scans are combined (Figure 5.1), or 2) swarms of the same ions arriving at the detector
simultaneously or interfering with each other in a trap or flight tube can cause the
baseline around more abundant ions to rise relative to the rest of the spectrum (Figure
5.2). Therefore, the first step in any quantitative ion analysis is determining where the
baseline should be established (i.e., what is the true zero from which the peak
abundance should be determined?).
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Figure 5.1. A MALDI-TOF peptide spectrum where matrix noise creates a

progressive baseline offset (gap between x-axis and spectrum at 1200
Da) and superimposed matrix noise peaks (inset) towards the low mass
region, which is compounded by the summing of multiple scans to
create the final mass spectrum shown.
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Figure 5.2. A portion of a single ESI-TOF lipidomics 3s scan from an LC/MS series
where ion over-abundance causes a localized three order of magnitude
baseline rise around the higher abundance peaks in the spectrum.

Orbitrap Spectra

Orbitrap mass spectra are unique in that the enhanced Fourier Transform (eFT)
technique used to construct the mass spectrum effectively reduces the ion harmonics to
less than 1% of the parent peak abundance.* Details of the eFT technique are beyond
the scope of this paper. The effect, however, is that the resulting Orbitrap mass spectra
appear to have a constant zero baseline.

FT-ICR Spectra

Traditional FT-ICR mass spectra are similarly produced by Fourier Transform of
the ICR time domain signal, like Orbitrap spectra. The mathematics of this transform are
beyond the scope of this paper, but the resulting spectra produced contain both noise
and ion harmonics. Two types of FT spectra can be produced. In Magnitude spectra
(Figure 5.3), the baseline floats above zero. In Absorptive spectra, the median counts
are effectively subtracted from the magnitude spectrum, shifting the spectrum downward
to straddle the x-axis at zero counts, with the option to trim (set to zero) negative counts
from the resulting spectrum.

4 Lange, O. et al., "Enhanced FT for Orbitrap Mass Spectrometry”, Int. J. Mass
Spectrom. 369: 16-22 (2014).
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Figure 5.3. A portion of a FT-ICR magnitude spectrum of a petroleum sample (log
abundance mode), showing the Fourier transform noise around some
sample peaks. The median baseline of the Fourier Transform
magnitude spectrum is offset from zero by =10° counts. A
corresponding absorptive spectrum would effectively relocate the
median baseline to zero counts, generating negative noise peaks that
may or may not be trimmed from the spectrum.

Information Content in the Spectral Baseline

The baseline offset from zero and the high frequency variation about that offset
provide useful metadata about the spectrum. There are various methods that can be
used to estimate the baseline of a spectrum (described below). The high frequency
variation about this baseline, particularly in regions devoid of real analyte peaks, provide
an estimate of the general instrument and chemical noise that should overlay all peaks
in the spectrum, providing useful signal-to-noise metadata.

The goal of spectral baselining is to eliminate low frequency noise (i.e.,
abundance variation over m/z scales larger than the width of the analyte peaks), while
preserving the high frequency noise (i.e., abundance variations too narrow to be
considered analyte peaks). A secondary goal is to establish the baseline in a way that
the amplitude of the high frequency noise can be estimated, so that the useful signal-to-
noise metadata can be applied for improved peak discrimination in downstream
processing.’

Spectral Signal-to-Noise Determination.docx
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There are several options that people use in mass spectral data collection that
should be avoided. Any technique that destructively removes spectral information (e.g.,
thresholds, smoothing, or centroiding) should be avoided as it necessarily limits
metadata collection useful for further analyses.

Centroid Mode

The data acquisition software of all mass spectrometers often provide various
options that unfortunately can remove data useful for establishing the true baseline and
signal-to-noise limits for peak detection. For example, acquiring data in centroid mode
eliminates all the natural spectral variation that can be found in regions that contain no
peaks of interest, eliminating it from consideration by various baselining and signal-to-
noise estimating algorithms. This may be convenient for the user because it makes the
spectrum smaller, saving storage capacity and digital transfer times to move the data to
other devices. It also removes options or eliminates degrees of freedom for the user in
the analysis of their data, by removing all the metadata about signal-to-noise and mass
and abundance precision that are useful during downstream processing. The typical
assumption is that the instrument manufacturer can ascertain better than the user: what
is a peak and what is noise. However, in a regulatory environment, how do you prove
that is a correct assumption and why would you forever give up the ability to apply
alternative or future peak detection processing options to your data?

Smoothing

Spectral smoothing is a common technique used to suppress high frequency
noise. Smoothing can be applied directly to the counts of the spectrum, or to the
derivatives used for peak detection through the use of higher order finite difference
calculus. There are a wide variety of smoothing techniques, a discussion of which is
beyond the scope of this paper. However, all smoothing effectively lowers the resolution
of the spectrum by widening all peaks. The amount of resolution loss depends on the
method applied. The additional challenge is how to smooth the spectrum when both
peak shape and the frequency of the noise defined as x- aX|sép0|nts or detector bins)
vary with m/z (such as in TOF, Orbitrap and FT-ICR spectra)’. Fundamentally, however,
all smoothing is destructive to the high frequency noise.

Thresholding

Sometimes the data acquisition software allows the user to specify a threshold
below which it does not record any spectral data, as a method to limit the data storage
and any subsequent data transmission requirements. Doing so also removes metadata
useful for setting the true baseline and the inherent signal-to-noise in the spectrum, and
permanently removes smaller real peaks below the imposed threshold that could
otherwise be identified from the resulting spectrum.

Data Compression

Most instrument manufacturers automatically compress the spectral data, even in
profile mode, by removmg zero count points or using a variant of the Lempel-Ziv-Welch
compression technique’. Data compression by these techniques is non-destructive,
because the removed points can be replaced exactly by spectral decompression once
the intrinsic data point spacing and compression type are known. However, these points
must be replaced in the spectrum before any baselining method or signal-to-noise
determination can be accurately applied.

Spectral Characteristics.docx [more complete reference?]
Lempel-Ziv-Welch File compression, https://en.wikipedia.org/wiki/Lempel-Ziv—
Welch (accessed 23 June 2016).
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Abundance-Based Peak Discrimination

Fundamentally, mass spectra consist of abundance values at given mass
positions. However, there are additional metadata that can be brought to bear in
baseline determination.® This includes: 1) how the intrinsic peak shape varies with m/z,
which can be used to distinguish high frequency noise and low frequency baseline
variation from peaks; 2) how the point spacing varies with m/z, which can be used for
pattern-based noise detection algorithms; and 3) that noise is always positive (one
sided) in mass spectra (i.e., there is no such thing as a negative count). This latter
characteristic of mass spectra intrinsically eliminates the applicability of most parametric
statistical approaches that might work well in other spectroscopy or signal analysis
measurements where noise is randomly distributed about a true value.

True and False Peaks

As an example, we can centroid the TOF spectrum above (Figure 5.2) with no
baseline or threshold constraints. Since this scan is part of an LC/MS run, we can also
centroid the immediately preceding and following scans of that same run. If a peak is
found to exist in the center scan and in at least one of the two adjacent scans within 50%
abundance, that peak is considered a positive detection event. If there is a peak that
appears in both the adjacent scans within 50% abundance, but not in the center scan,
that peak is considered a negative detection event. Histograms of the distributions of
both the positive and negative peaks found in the center scan by their abundance can
then be determined (Figure 5.4).

1400 4———

| [ Positive Peaks|

1200 I
1 | [ ] Negative Peaks| A

1000 i I
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6004 ¢ i

Number of Peaks

400- I

200 i

O ] T T T N T N M i T T v T T T T T T T
1 2 3 4 5 6

log (Abundance)

Figure 5.4. Histograms of peaks found in the spectral example of Figure 2 as
distributed by their abundance. Positive peaks are those detected in
either the immediately prior or following scan of the LC/MS run within
50% of the target peak abundance. Negative peaks are those found in

8 see section on Spectral Characteristics
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both the surrounding scans, but not found in the center scan within 50%
abundance of either surrounding scan.

What immediately becomes apparent from these distributions is that there is very
little abundance discrimination between true positive peaks and false peaks in this
spectrum. Some of this overlap is due to the baseline float around peaks of high
abundance (Figure 5.2), which adds counts to any noise peaks found in that local
vicinity. Some of this overlap is due to low frequency non-linearities or “float” in the
baseline (Figure 5.1, near 1200 Da), which also adds extra counts to peaks in these
regions. Much of the overlap, however, results from noise superimposed on the sides of
larger peaks, which many centroiding methods detect as a peak with its abundance
estimated from its apex to zero. Similarly, noise inflation due to the summing of multiple
scans can artificially raise the abundance values of all centroids drawn from zero counts.

Proper baselining minimizes or eliminates the contributions of low frequency
baseline variability to the error in centroid abundances of the peaks found. More
importantly, establishing a proper baseline allows the signal-to-noise limits to be
accurately estimated.

Baselining Algorithms

A wide variety of algorithmic methods have been proposed and applied to the
baselining challenge of mass spectra. These methods can generally be clustered into a
few distinct categories: polynomial regressions of increasing orders (including the zero
order fit of mean or median counts), window-based local baselining approaches (both
static and dynamic), or asymmetric Whittaker smoothing and its derivatives.

Iterative Polynomial Regressions

One common approach is to find the least-squared polynomial regression of the
mass domain to the abundance or log(abundance) domain. The least squares
polynomial order may be determined by standard statistical methods, either % for the
zero order fit (average or log[average]) or goodness of fit or incremental improvement
ANOVAs for all higher order polynomialsg. The least squares polynomial fit, however,
tends to increasingly overestimate the baseline as more peaks, or peaks of greater
height, appear in the spectrum (Figure 5.5).

o Zar, J. H., Biostatistical Analysis, pgs. 268-273 (Prentice Hall, 1974).
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Accuracy matters®

Variations on the least mean square polynomial regression have been proposed to solve
this overestimation issue, such as weighting the data inversely to the highest abundance within
a mass window (i.e., discounting m/z regions that contain the larger peaks). However, this adds
the user-adjustable parameter of an appropriate window size to the regression, which can be
variable with m/z, depending on the mass analyzer. It is also possible to ignore the amplitude of
the peaks and noise entirely by applying a least median square regression. However, least
median squared regressions have multiple valid solutions, some of which are clearly suboptimal
(Figure 5.6), with no statistical recourse to determine the global optimum.

——Spectrum

——1st Order Polynomial Least Median Squares Fit
——2nd Order Polynomial Least Median Squares Fit
——3rd Order Polynomial Least Median Squares Fit
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Figure 5.6. The Log1o Least Median Square Polynomial fits obtained using the MASS library
of the R.app for the ESI-TOF spectrum of myoglobin. Those polynomials higher
than O[5] converged back to the O[1] solution with no net improvement in the
quality of the baseline and failed to follow the observed baseline curvature.
However, in each case, the baseline solution was indeed a Least Median
Squares fit with equal numbers of points above and below the fit, illustrating that
multiple possible valid solutions can be obtained for higher order polynomials by
the method of Least Median Squares.

We note here that the zero order polynomial solution is the same as a flat baseline
(mean, weighted mean, or median) through the spectrum. This very common mass spectral
baselining method is therefore considered a part of the polynomial regressions approach.

Another variation on the polynomial regression method is to remove all points above the
regression line and perform the regression again, iterating fits and higher abundance point
removal for a constant polynomial order until there are either too few points left to perform a

© 2016 Veritomyx, Inc., All Rights Reserved. 19



regression of that order, or a user-specified maximum number of iterations are reached.™
However, standard parametric goodness of fit statistical methods fail to predict the optimal
number of iterations. It is readily shown that the final result for any polynomial order ends up
being one data point more than the order of the polynomial (a degree of freedom limitation of
regression analysis). In the case of a zero order polynomial, the resulting baseline is always the
lowest abundance value in the spectrum by this method, unless the number of iterations is
restricted a priori by the user.

Rubber Band Baseline

In Rubber Band baselining"" the spectrum is divided into even user-determined
increments. The local minimum is determined within each increment and is subsequently used
as a support point for the baseline. The baseline between these support points can be obtained
by linear interpolation connecting the dots (i.e., a rubber band stretched over anchor points), a
cubic spline, or a polynomial regression. The challenge in this method is to define a window
size (x-axis increment) that is large enough to negate the impact of high frequency noise, large
enough to not allow the baseline to rise into the center of real peaks, but not so large that the
baseline fails to track the low frequency undulations of the spectrum.

Classic rubber band baselining is implemented with a constant Am/z window size, which
only works for ion trap spectra. If the window is alternatively defined as a constant number of
points (detector bins), then the method can be successfully adapted to Orbitrap spectra since
the peak width is constant in that domain'®>. However, neither of these baselining methods are
suitable for the variable window widths of either TOF or FT-ICR spectra.

The next problem is determining what measure of peak width to use for the window size:
full peak width at half maximum height (PWHH), or peak width at the baseline (which becomes
a "chicken-or-egg first" problem when being applied to baseline determination)? Perhaps the
optimum window size lies at some multiple of the peak width? Day-to-day analyzer tuning
variations can cause shifts in the intrinsic peak shape, as do any changes in the working mass
range of the analyzer. Finally, how does skewness or kurtosis in the intrinsic peak shape affect
the optimum window size? Since there is no statistical guidance for the optimum window size, it
can only be set by user judgment and needs revision every time the mass analyzer settings are
changed.

Moving Average Methods

While the rubber band method divides the spectrum into fixed increments, it is similarly
possible to move the analysis window by increments through the spectrum, like a rolling ball®,
to get a local minimum, median™, or abundance-weighted average for every detector bin (point)
in the spectrum. As with the rubber band method, there is no statistical guidance for how to set
the appropriate window size. Logically, it must be larger than the baseline width of any single
peak or the resulting baseline will rise inside every peak. This means that the method can
potentially be applied to ion trap and Orbitrap spectra, but would need m/z-adaptive peak width

1 Lieber, C. A., Mahadevan-Jansen, A., “Automated Method for Subtraction of Fluorescence

from Biological Raman Spectra”, Applied Spectroscopy, 57:1363-1367 (2003).

Beleites, C., “Fitting baselines for spectra”, https://cran.r-
project.org/web/packages/hyperSpec/vignettes/baseline.pdf, (Mar 4, 2014).

Spectral Characteristics.docx

' Kneen, M. A., Annegarn, H. J., “Algorithm for fitting XRF, SEM and PIXE X-ray spectra
backgrounds”, Nuclear Instruments and Methods in Physics Research Section B, 109-
110:209-213. (Apr, 1996).

Friedrichs, M.S., “A model-free algorithm for the removal of baseline artifacts”, J Biomol.
NMR, 5:147-153 (1995).
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information to be applied to TOF or FT-ICR spectra, where the peak widths are not constant on
a Am/z or bin number spacing.

The first question is: should be window be centered around the spectral peak, or
skewed to the left or right from the apex, depending on the shape of the mass spectral peak?
The second question is: should the baseline produced consist of the series of local minima, be
inversely weighted by the maximum apex height in the window, or consist of the percentile
cutoffs (e.g., median) of the abundance values in these moving windows? Finally, how are the
moving average points to be connected to form a coherent baseline (e.g., regression or what
order, cubic spline, etc.)? Each of these user-adjustable parameters opens up a plethora of
possibilities that cannot be inferred statistically from the spectral data and, therefore, require
user judgment to set.

Penalized Least Squares Smoothing

Perhaps the most common method for time series noise reduction is the Whittaker
smoother." Designed for evenly spaced data, the Whittaker smoother attempts to both fit a set
of data (y) with a cubic spline model (u[x]) by minimizing the least squares residual error that
represents the raw data, but penalizes that model, if subsequent points of the model vary too
much (i.e., the finite difference rate of change in the model shape with x is large). An arbitrary
Lagrangian multiplier () defines the relative contribution of the cubic spline and finite difference
slope to the final model objective function (SSE):

SSE = (1—)\)Zwi (yi—,uq;)2+)\2(62

The Whittaker objective function (SSE) for minimization consists of two parts. The first
part is the standard sum of squares residual error from the regression model
(yi - W)?, which results in re-creation of the spectrum as a cubic spline when A—>0. The second
part of the objective function consists of a local a prroxmatlon (by dlfference equations) of the
second derivative of the regression model [(8°ui)° = (Wi1-2Wi+pir1)/(AX)?]. Where the direction of
previous and subsequent points is unchanged (along the trajectory of a line) the second
derivative (i.e., change in slope) goes to zero.. Where the trajectory of the line changes, the
square of the second derivative is always positive, irrespective of the direction of that change.
The magnitude of the magnitude of the change in the second derivative increases the more that
a series of model points deviates from linear. In the classic Whittaker smoother, the weighting
function w; is set to 0.5 for both positive and negative values of the residual error (y; - ).

Asymmetric Whittaker Smoothing

The Whittaker algorithm is, in essence, a data smoother that reduces the magnitude of
high frequency noise in the data. To the Whittaker smoother, peaks in a mass spectrum are
effectively just additional high frequency noise. However, the objective function can be made
asymmetric to create a smoothed baseline, by providing different weights to the residuals that
are greater than the Whittaker smoothed model than those that are less than the model pomts
(i.e., where w; = p where the residual is positive and w; = 1-p where the residual is negative). 16
At p=0.5 all residuals contribute equally to the residual error at any value of A. As p—>0, the
Whittaker smoother moves progressively closer to the local minimum of the spectral
abundances and starts to approximate a baseline (Figure 5.7).

15

Whittaker model, https://en.wikipedia.org/wiki/Whittaker_model (accessed June 29, 2016).
16 Eilers, P. H. C. and Boelens, H. F. M., “Technical Report: Baseline Correction with
Asymmetric Least Squares Smoothing”, Leiden University Med. Center Report,
http://zanran_storage.s3.amazonaws.com/www.science.uva.nl/ContentPages/443199618.p
df (Oct 21, 2005).
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Figure 5.7. A portion of the ESI-TOF spectrum (Figure 5.2) showing the results of different

parameters used in the asymmetric Whittaker smoothing function. Where A—>0
the Whittaker smoother becomes a cubic spline approximation of the raw
spectrum. At higher values of A, the smoother approximates a local average of
the spectral abundance data where positive and negative residuals are weighted
equally (i.e,. p=0.5). As p is lowered, preferentially weighting against the higher
abundance points, the smoothed spectrum starts to approach a spectral
baseline.

The asymmetric Whittaker smoother replaces the unknown of optimum window size in
the rubber band and moving average baseline methods with two more obscure parameters, the
Lagrange multiplier (A) and a residual weighting function (w;). Unfortunately, neither adjustable
parameter can be inferred directly or indirectly from the spectral data by statistical means.
However, they appear to be less subject to tuning variations and mass range changes in the
mass analyzer, versus the window size changes required in the previously-described methods.
The asymmetric Whittaker smoother also appears to be a universally-applicable method to all
mass analyzer types, since the result seems to be independent of peak shape or variation of
peak shape with m/z.

It should be noted, however, that as A—>1, the asymmetric Whittaker smoother model
becomes the local weighted average abundance value of the spectrum, invariant with m/z. We
have already shown (Figure 5.7) that as A—>0 the raw spectrum is faithfully reproduced as a
cubic spline). As a consequence A <1. Furthermore, as p—>0, where p determines the residual
weighting function (w;), the asymmetric Whittaker smoother will approach the minimum iterative
polynomial approximation of a constant order zero baseline at the lowest abundance value in
the spectrum. As a consequence, 0 < p < 0.5. While A and p are therefore bounded, there is no
further guidance on how to optimally set either user-adjustable parameter for any given
spectrum via statistical means, and it is left to the user to follow their best judgment.
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Combinatorial Methods

Various combinations of the above baselining approaches have also been proposed,
such as the Filling Peaks method."” In this method, - Whittaker smoothing is applied to the
spectrum using an arbitrary value for .. The Whittaker smoothed spectrum is then subjected to
rubber band minima determination with an arbitrary window size of n points. The rolling ball
mean of the rubber band minima is then iteratively applied using an m times n window size
(where m is an arbitrary multiple of n, m*n < total points in the spectrum, and m > 1). In each
iteration, those rubber band minima that are above the rolling ball mean are removed from the
local mean calculation. The process continues for an arbitrary number of iterations. This
technique contains 4 user-adjustable parameters (A, n, m > 1, and number of iterations), none
of which can be statistically-inferred from the spectral data.

Peaklinvestigator™ Baselining

Thus, the problem remains unresolved: how to robustly baseline spectra in a way that
non-destructively reads through the high frequency noise, adapts dynamically to the low
frequency baseline variations, yet requires no user-adjustable parameters. Veritomyx, Inc. has
developed a proprietary baselining method that accomplishes just that. The resulting
PeaklInvestigator™ baseline effectively provides a robust approximation to the local median
counts, yet this is accomplished in a manner that avoids getting trapped in alternative local-
minima solutions (as in Figure 5.6). While computationally complex, it is statistically-valid,
universally-applicable, and accepts no user-adjustable parameters. Figure 5.8 shows the PI
baseline automatically produced for the troublesome TOF spectrum of Figure 5.6.

The PI baseline produces a result comparable to that which might be obtained from a
least median polynomial regression of optimum order and which is constrained to the global
optimum result, or that might be produced with a moving median method with continuous local
re-optimization of window size. However, it avoids any need for the user to set the proper
polynomial order or to estimate the best window size as a function of m/z, as would be required
by either of these methods (see above discussions).

Pl baselining performs equally well with FT-ICR (Figure 5.9) and ion trap spectra
(Figure 5.10). In the case of the FT-ICR spectrum, Pl baselining was applied to both the
magnitude and absorption mode versions of the same spectrum. When the resulting absorption
mode baseline is scaled back to fit the magnitude spectrum, it overlaps the baseline obtained
from the magnitude spectrum, suggesting that the Pl baselining method is very robust to
spectral amplitudes. Because Orbitrap spectra have an effective baseline of zero counts, they
do not require additional baselining.

" Liland, K. H., “4S Peak Filling - baseline estimation by iterative mean suppression”,

Methods, 2:135-140 (2015).
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Figure 5.8. The PeakInvestigator™ baseline determined for the ESI-TOF spectrum of

myoglobin shown in Figure 5.6. There are no user-adjustable parameters for the
Peaklnvestigator baseline. This baseline provides a local approximation to the
median counts, yet avoids alternative valid solutions to the least median square
regressions approach in Figure 5.6.
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Figure 5.9. The PeakInvestigator™ baselines determined for FT-ICR spectra of petroleum
samples. The figure compares the Pl baseline obtained from the magnitude
mode spectrum to that of the corresponding absorption mode spectrum (after
scaling back to magnitude mode). The close overlap of these two baselines
suggests that the method is very robust to changes in spectral amplitude over at
least 5 orders of magnitude in abundance.
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Figure 5.10. The PeakInvestigator™ baseline determined for an ion trap spectrum of lipids.

Baselining Limitations

All baselining methods, even baselining by eye, are built on the implicit assumption that
the majority of spectral information is noise. If the spectral footprint of the real analyte peaks
becomes the maijority of the data over any large region of the mass spectrum, then the chemical
and instrument noise in that region becomes drowned in a confusing jumble of overlapping
analyte peaks. If the heavily-overlapped regions are small (i.e., the width of a few peaks), any
robust baselining algorithm may traverse the region with only minor error. However, when such
regions of ultra-high peak density start to cover 20, 50, 100, or wider Da spans of the spectrum,
any baselining algorithm will increasingly start to confuse real analyte peaks with chemical or
instrument noise.

This problem is more common in lower resolution mass analyzers (e.g., ion trap and
unit-resolution TOF and quadrupole analyzers), where the peak width at baseline approaches 1
Da. The compositions of most ions below 1,000 Da generally produce peaks closely spaced
(0.1 Da) in a mass spectrum for singly-charged molecular ions because the maximum mass
defect for any element is about 0.1 Da."® Therefore, singly-charged molecular ions should
never produce a baselining problem at any spectral resolution above 3,000 (defined as mass
divided by peak width at half height). Higher resolution mass analyzers are even more immune
to this baselining limitation.

18 Hall, M. P. et al., "Mass defect' tags for biomolecular mass spectrometry," J Mass Spect.,
38:809-816 (2003).
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The problem of peak overlaps dominating the baselining algorithm primarily appears in
the spectra of multiply-charged species at any resolution. Doubling the charge state halves the
nominal 1 Da spacing between peaks. Triply-charged species reduces the interpeak spacing to
0.3 Da. Again, the higher the resolution, the less of a problem this poses to the baselining
algorithm, but densely packed spectra containing mixtures of charge states can ruin the
performance of any baselining method. This issue is generally remediated by better pre-
separation of the analytes prior to mass spectral analysis.

6. SPECTRAL SIGNAL-TO-NOISE DETERMINATION

All mass spectra are confounded by chemical and instrument noise. The ability to
discriminate true peak signals from this noise is a critical challenge in peak detection. The
crossover between spectral data and noise, therefore, is an important piece of metadata to be
determined within a spectrum. A statistically robust signal to noise threshold can be used to
determine when a side peak is real or should be attributed to noise. It also aids in the
establishment of thresholds for peak detection.

Chemical and instrument noise is not constant at every mass point in a spectrum. For
example the matrix noise produced in MALDI ionization often underlies all analyte peaks in the
low mass range of MALDI spectra (Figure 6.1). Even there, however, its contribution to the
counts at any given mass varies (Figure 6.1, inset). In an FTICR spectrum, high frequency
detector noise is readily visible as a jagged baseline surrounding all the analyte peaks (Figure
6.2). This variation in chemical noise about an average (or median) value is the key to
establishing the spectral noise level.
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Figure 6.1. The matrix noise offset produced in a MALDI peptide spectrum. MALDI matrix
noise becomes increasingly abundant at lower m/z, causing a baseline offset of
the spectrum. The inset shows that the matrix contribution to the counts in any
given mass point varies locally with mass, forming a repeating pattern.

L]

FTICR_AMP_scaled.scan ®

9.0e+08 -
8.0e+08 |
7.0e+08 |

6.0e+08 o

5.0e+08 -

4.0e+08 4

3.0e+08 |

T T T T T
1905 1910 1915 1920 1925
mjz

2.0e+08

1.0e+08 4

T T T T T T T T T T T T T T T T T T T
500 1000 1500 2000 2500

Figure 6.2. The high frequency detector noise in an FT-ICR spectrum of a petroleum
sample.

Average Noise and Noise Variance

Mass spectral noise has two separable components: 1) the average noise, which lifts
the baseline from zero counts because noise is always positive in a mass spectrum; and 2) the
noise variance about this average. In a spectrum where the combined width of the analyte
peaks represent just a small fraction of the mass range of the spectrum, the local median
baseline effectively approximates the average chemical and instrument noise in the spectrum.

Assuming the analyte peaks cover a limited fraction of the total mass range, then the
median baseline can be assumed to represent the average noise level in the spectrum. Since
peaks generally extend above the median baseline, then any variance below the baseline
typically represents mass points that accumulated less than the average noise. Those counts
above the local median baseline include those mass points that accumulated more than the
average noise counts, but also include the counts produced by the analyte species. Therefore,
the difference between the actual counts below the baseline and the median baseline can be
treated as effectively representing half of the actual noise variance.

Consequently, by subtracting the local median baseline from the spectrum, the spectrum
is re-registered to zero baseline counts, eliminating the average noise offset. Those residuals
that extend below zero counts represent the lower half of the noise variance and can be
reflected to positive counts to provide an estimate of the level of chemical and instrument noise
remaining in the baseline-subtracted spectrum.
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For example, in the MALDI spectrum (Figure 6.1) the matrix offset in the low mass
region can be effectively re-registered to zero counts by subtracting the local median baseline
(Figure 6.3), as approximated by Peaklnvestigator™. Half of the total variance in this matrix
noise is then represented by the magnitude of the counts that extend below zero abundance.
The other half, and the analyte peaks of interest, lie above the local median. If the pure noise
variance below the median is reflected above the median (Figure 6.3), then we effectively
estimate the overall chemical and instrument noise in this spectrum. This estimate is imperfect
because the chemical noise in this MALDI spectrum is not randomly distributed but is in fact
patterned (inset, Figures 6.1 and 6.3), but the trend in its abundance with m/z is clearly correct.
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Figure 6.3. Peaklnvestigator™ baseline subtraction of the MALDI-TOF spectrum re-registers
the average noise counts to zero, eliminating the matrix offset created in the low
mass range of the original spectrum (Figure 6.1). The peaks in the baseline-
subtracted spectrum that extend below zero abundance effectively represent
about half of the total variation in chemical and instrument noise in the spectrum.
When these negative peaks are reflected above the median, an estimate of the
noise is produced. In this case this is an under-estimate probably caused by the
interlaced pattern evident in the MALDI matrix noise (inset). This matrix peak
pattern is clearly narrower at the apex and wider at the base, lowering the
estimate of a median baseline and biasing the s/n variance to the low side.

The spectral noise in the FT-ICR spectrum (Figure 6.2) appears to be more randomly
distributed. After subtraction of the Peaklnvestigator™ baseline and reflection of the residuals

now below baseline, the local signal to noise is much better approximated (Figure 6.4) than that

of the MALDI spectrum (Figure 6.3).
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Figure 6.4. PeakInvestigator™ baseline subtraction of the FT-ICR spectrum (Figure 2) to re-

register the spectrum to zero counts. The negative residuals are then inverted to
estimate the upper limits of the chemical and instrument noise in this spectrum.

Statistical Signal-to-Noise Estimation

Where the noise variance is even throughout the spectrum, the statistical distribution of
this variance can be determined by combining the negative and reflected noise distributions
obtained from the baseline-subtracted spectrum. This is illustrated in the following examples.

ESI-TOF Example

In this example, an ESI-TOF spectrum from an LC/MS lipidomics series is the target
scan (Figure 6.5). After baseline subtraction and noise reflection, the signal-to-noise variance is
produced. Here, without the interfering matrix peak pattern common to MALDI spectra (Figure
6.1), the signal-to-noise levels approximated by this method appear close to that observed by
eye (Figure 6.6). The variance is also relatively even throughout the spectrum.
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Figure 6.5. A single ESI-TOF spectrum taken at random from an LC/MS series obtained

from a plasma lipidomics experiment. The inset shows the average noise offset
and local noise variation around a series of analyte peaks.
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Since the noise variance is roughly uniform across the spectrum, a statistically-valid
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The spectrum of Figure 5 after PeakInvestigator™ baseline subtraction showing
the reflection of the sub-baseline noise variance. It is observed that the noise
variance thus estimated is roughly constant across the spectrum. The inset
shows that the reflected noise variance agrees well with the actual spectral noise

variance.

estimate of this variance can be obtained from its abundance distribution. Plotting the combined
(positive and negative) noise variance abundances on a probability plot (Figure 6.7) shows that

it is approximately normally distributed. Therefore, these variance data can be fit to a normal

distribution, which allows the limits of chemical and instrument noise throughout the spectrum to

be estimated with any

statistical confidence desired.
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Figure 6.7. A probability plot of the ESI-TOF noise variance abundances obtained from the

data of Figure 6. A normal distribution curve fit is shown that can be used to
estimate the upper limit of the spectral signal-to-noise with any statistical
confidence desired.

FT-ICR Example

Similar results are obtained for the FT-ICR spectrum shown above (Figure 6.2). In this
FT-ICR spectrum the noise variance is seen to be approximately normally distributed (Figure
6.8) even though a slight bulge in the variance can be seen between 100 and 350 Da in the
original spectrum (Figure 6.2).
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Figure 6.8. A probability plot of the FT-ICR noise variance abundances obtained from the
data of Figure 6.2.

lon Trap Example

In this example (Figure 6.9) we look at a tandem MS CID fragmentation spectrum of a
peptide taken from a yeast peptidome LC/MS/MS study. The Peaklnvestigator™ baseline is
shown near 1 count. The resulting signal-to-noise distribution (Figure 6.10) is again seen to be
nearly normally distributed by the method described above.
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This is an example of a peptide fragmentation spectrum (MS2 scan) obtained
from an ion trap analyzer. Tandem MS spectra typically have very low chemical

and instrument noise, as is reflected in the PeakInvestigator™ baseline result
near 1 count.

© 2016 Veritomyx, Inc., All Rights Reserved.

35



02 i | | | | | | | | | | | | |
] ——y=-1.6839%-17 + 0.096038norm(x) .
] R=0.97017 i
0.15 1 I
. ] I
2
S 0.1 r
©
c
3 ]
< 0.05 A C
[0
[&]
C
.8
S 0 7] r
>
(0]
R
S -0.05 - C
G
3 -0.1 1 .
Q.
n
-0.15 -
'02 ] T T T T T T T T T T T T T
.01 A 1 5 10 2030 50 7080 90 95 99 99.9 99.99
Percent
Figure 6.10. The signal-to-noise distribution variances are graphed for the below baseline
variances and their above baseline reflection from the ion trap spectrum of
Figure 6.9. A normal distribution curve fit is shown that can be used to estimate
the upper limit of the spectral signal-to-noise with any statistical confidence
desired.
Orbitrap

Orbitrap data outputs from the mass analyzer consistently provide an effective uniform
baseline of zero counts.” Therefore, the above method for signal-to-noise estimation is not
applicable to Orbitrap spectra.

7. SPECTRAL SMOOTHING

Spectral noise, particularly that higher in frequency (shorter in wavelength) than the peak
width, causes problems with finite difference centroiding.”® While baselining attempts to correct
for large wavelength noise,”' short wavelength noise is often addressed by smoothing. Given
the magnitude of the noise relative to the peak height, noise can also cause false peaks to be
detected by all centroiding methods, particularly when a peak model is not a perfect fit to the
true peak shape. While the literature is replete with specific examples of various approaches to

¥ see section on Spectral Baselining.

see section on Spectral Centroiding.
see section on Spectral Baselining.
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the filtering or smoothing of mass spectrometric data, as Kearnsley et al.** have suggested, the
blind application of any of these methods to mass spectrometric data can result in significant
data loss.

Savitzky—Golay Smoothing

Savitzky—-Golay filters® ** are probably the most popular mass spectral digital smoothing

method. In this method, successive sub-sets of adjacent data points (y;:n) are fitted with low
degree polynomials and convolved to create a single optimal set of abundances ( Y; ), by least
squares minimization of the Savitzky-Golay coefficients (C;,, Equation 7.1). The resultlng
smoothed spectrum ( Y; ) essentially becomes a weighted average of all neighboring
abundance values in the original spectrum (yj:n).

1 k
j = N Z hyj—l—h
=—k (7.1)

Examples of Savitzky-Golay filtering applied to a TOF data file is shown in Figure 7.1. In
general, the lower the order the more smoothing is accomplished. A characteristic of the
Savitzky-Golay filter is that the window width (i.e. the number of points) used in the polynomial
fit should be just larger than the order of the polynomial for best results. Abrupt changes in
spectrum abundance (before and after peaks) tend to cause discontinuities in the Savitzky-
Golay smoothed spectrum, as is evident from the deviations below the spectrum for the
smoothed spectra in Figure 7.1. These deviations are amplified on the log(abundance) scale
used in the figure. The effect of these deviations on the resulting centroids is generally
mitigated by thresholding of the resulting false negative peaks these deviations generate during
the centroiding process.

However, as with all smoothing methods the raw signal is distorted in the convolution
process. The peak height is reduced and the half-width of the peak is increased (Figure 7.1).
Thus applying this smoothing method can force nearly-isobaric partially overlapped peaks to be
irresolvably merged.

? Kearnsley, A. J., Wallace, W. E., Bernal, J., and Guttman, C. M., “A numerical method for
mass spectral data analysis,” Appl. Math. Lett., 18:1412-1417 (2005).

2 Savitzky, A.; Golay, M. J. E., "Smoothing and Differentiation of Data by Simplified Least
Squares Procedures,"” Analytical Chemistry, 36 (8): 1627-39 (1964).

* Steinier, J., Termonia, Y.. and Deltour, J., "Smoothing and differentiation of data by simplified
least square procedure,” Analytical Chemistry, 44 (11): 1906-9 (1972).
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Figure 7.1. Savitzky-Golay smoothing of different polynomial orders and with different

numbers of neighboring points applied to a TOF lipidomics spectrum. The
discontinuities of the smoothed spectrum are characteristically seen immediately
before and after a peak and deviate strongly below the spectrum. These can
give rise to false positive detections, but the resulting peaks are generally below
the threshold limits for reporting.

Whittaker Smoothing

Whittaker realized that smoothing is a balance between absolute fidelity of a model to
the data versus simply minimizing deviations in the model curve fit to that data (Equation 7.2).*
Designed for evenly spaced data, the Whittaker smoother attempts to fit a set of abundance
data (y) with a cubic spline model (y) by minimizing the least squares residual error versus the
raw data, but penalizes the model when subsequent points within the model vary too much.
With A=0, it gives the cubic spline solution that maximizes fidelity to the raw data. As A
increases the model is smoothed out, until it eventually smooths over all the peaks as
A approaches 1.

 Whittaker, “On a new method of graduation.” Proceedings of the Edinburgh Mathematical
Society, 41, 63-73, (1923).
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SSE = (1-0) (g — i) + A (6%m)°
: (7.2)

The Whittaker objective function for the sum of squares error (SSE) for minimization
consists of two parts. The first part is the standard SSE from the regression model (y; - W),
which when A—> 0 would result in the re-creation of the spectrum as a cubic spline. The
second part of the objective function consists of a local approximation (by finite difference
methods) of the second derivative of the regression model [(82ui)? = (pi-2ui+Mi+1)/(AX)?]. Where
the direction of points in a series is unchanged (along the trajectory of a line), the second
derivative goes to zero. However, the square of the second derivative is always positive at
inflection points, and the magnitude of the inflection increases the more that a series of model
points deviates from linear. The user-adjustable parameter () is used to weight the two terms
of the Whittaker objective function to control the local responsiveness of the regression to
inflections in the data (y;). The proper value for A can only be determined empirically (Figure
7.2).
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Figure 7.2. Whittaker smoothing applied to the Spectrum of Figure 7.1 with different values

for A, which varies between a minimum of 0 and a maximum of 1. Note the
increased width and depth of the discontinuities at both the start and end of each
peak in the smoothed spectrum, as a function of increasing A. Values of A>0.75
generate negative peaks in the region of interest.
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Fourier Filtering

Fourier filtering is often employed to smooth data when the superimposed noise is of a
different frequency than that of the signal itself. In these situations, it can be an effective means
to sharpen the peaks for better discrimination by removing confounding noise that is
mismatched versus the frequency of the true peaks. However, the technique can be difficult to
apply generically to mass spectra for a variety of reasons.

First, the peak shape must be uniform, and must be uniformly sampled across the mass
domain of the spectra, otherwise no single set of sine wave harmonics will adequately describe
every peak. This is generally straightforward for ion trap spectra, but requires m/z*
transformation of TOF, Orbitrap, and FTICR spectra into alternative evenly-spaced mass
domains, in order to produce uniform peak shapes and a constant waveform sampling rate in
these spectra, to support Fourier filtering.

Second, the peaks of interest in the spectrum are often not evenly spaced (periodic),
particularly in multi-charged spectra where the spacinq between members of each isotopic
series depends on the reciprocal of the net charge (z". This is further complicated by the
necessary conversions of the mass domain to facilitate uniform peak shapes in TOF, Orbitrap,
and FTICR spectra.

Fourier transformation starts with the assumption that any spectrum can be modeled as
an infinite series of sine waves of different frequencies. The resolution power of this
mathematical transform, however, depends on the number of reinforcing repeats of that peak
shape pattern contained across the mass spectrum. This is illustrated in the Fourier filtering of
a MALDI-TOF spectrum of Na+ PEG adducts Figure 7.3. Figure 7.3a shows the Fourier
Transform of this spectrum with the various peak harmonics clearly identified. By removing all
the high frequency noise (= 10 Da™ corresponding to frequencies less than 0.1 Da"®) the
reverse transform can be produced (Figure 7.3b). However, in this case, the resolution of the
filtered Fourier reverse transform is lower than that of the original spectrum.

The full MALDI-TOF spectrum extended for nearly 5,000 Da with a PEG Na+-adduct
isotopic pattern every 44 Da for a total of 113 repeating signals, yet there is still a net resolution
loss by filtering. This points to the second issue with Fourier filtering, that there must be enough
peak repetition on a specific frequency to be able to extract a signal, otherwise resolution is lost
with the transform. In the successful literature example of Fourier filtering® the high frequency
MALDI-matrix noise is suppressed (filtered) from a MALDI-TOF spectrum. That matrix noise
generates a characteristic peak pattern within every mass unit of the spectrum, dwindling in
abundance slowly over several hundred Da and having a characteristic mass spacing that was
off-frequency (i.e., with a different mass defect) from that of the few analyte peaks.

*® Kast, J. et al., “Noise filtering techniques for electrospray quadrupole time of flight mass
spectra,” J. Am. Soc. Mass Spectrom., 14:766-776 (2003).
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Wavelet Denoising

Wavelet theory solves the insufficient repetition (sampling sufficiency) issue of
Fourier filtering by assuming something about the underlying waveform (i.e., by choosing
a mother wavelet). The basic assumption in wavelet denoising is that the peak shape
can be fully represented by a few harmonics of the mother wavelet. Ergo, no infinite
series is required (as in Fourier transforms) and very few data points in localized regions
of the mass spectra are needed to calculate the adjustable parameters of a relatively few
harmonic terms of the mother wavelet. The art of wavelet denoising arises in guessing
a mother wavelet that fully represents the peak shape, and in finding the right series of
harmonics to represent the signal of interest.

Wavelet methods in mass spectrometric analysis were originally applied to ion
cyclotron resonance (ICR) analyzers as an alternative to Fourier transforms.” However,
wavelet denoising has more recently been applied to the analysis of TOF spectra. ?* %%
As with Fourier filtering, the peak shape must be constant across the mass domain.
Therefore, wavelets could be applied directly to ion trap spectra, but only to m/z*
transformed versions of TOF, Orbitrap or FTICR spectra.

In Figure 7.4 we illustrate the practical aspects of wavelet denoising with a simple
spline wavelet denoising algorithm®' applied to a Jeffamine polymer (an amino-
terminated PEO/PPO copolymer) isotopic series from a MALDI-TOF spectrum. The first
step in wavelet analysis, after choosing the form of the mother wavelet is to establish the
appropriate order of the wavelet transform, specifically a high enough order that
adequately reproduces the parent signal. Figure 7.4a shows that an order 5 spline
wavelet is the minimum necessary to reproduce the parent spectrum. The second step
(denoising) involves compression of the wavelet transform coefficient matrix by
eliminating (i.e., setting to zero) the lesser coefficients of the transform matrix. Any
harmonics of the mother wavelet with zero coefficients no longer contribute any signal to
the inverse wavelet transform. The final step is the inverse wavelet transform. We
illustrate these last two steps by mapping the inverse transforms for different noise
cutoffs over the original data (Figure 7.4b).

" Shew, S. 1., “Method and apparatus for determining relative ion abundances in mass
spectrometry utilizing wavelet transforms,” US5436447 (July 25, 1995).

? Morris, J. S., et al., “Feature extraction and quantification for mass spectrometry in
biomedical applications using the mean spectrum,” Bioinformatics, 21:1764-1775
(2005).

» Lange, E. et al., “High-accuracy peak picking of proteomics data using wavelet
techniques,” Pacific Symposium on Biocomputing, 11:243-254 (2006).

% Nafati, M. et al., “Multi-scale data reduction algorithm of proteomic mass spectrum,”

Internet J. Acad. Physician Assistants, 5(1) (20006).
¥ Mathematica Wavelet Package. Wolfram Research.

© 2016 Veritomyx, Inc., All Rights Reserved. 42



ey

SMOYS Y [aUBd ‘wnuoads 401-1QTVIA B Wouj seuss 8dojos 000z

e | (nwe) zyw

€661 c661 1661} 0661

(nwe) z/w

166} 80661 9066} 1¥'066} c'066L 066}

Sunoy

00k
0ocl
(0 4%
09t

6861

8861

HO-IND 00} |9AS| — -
HO-IND G2 9N ——
HO-IND G |[9AS| ——
SJuUN0Y —— | 1

0S

00}

oSt

00¢

Sjunoy

‘pansesay sjybry (I -ou| ‘xAwojieA 9102 ©

"wlioysue.) astanul ay Buiye} 810494
0J9Z 0} }8S BJOM UMOUS SBNJBA JJO-ND 8y} MOJaq SJUsIdIa0d 8y} g |aued uj “syead 21dojosi-[Dg,] 8U} J0 BUO SMOYS Jasul ay))
sauas a1dojosi ay) 0} paljdde se w.ojsuel} 8SI9AUI 8y} Buye) 810joq XLJew WLOJSURI) 19[9ABM SUj} JO SIUBIOILE09 SN[EA JOMO
Buissaidwoo Ajpaissaiboid Aq pasiousp aq ued [eubis ayj Moy SMOYS g [dued "umoys Yead a1dojosiouow ayy Jo wnioads
[eulBlIo 8y} UO SWIojSUB.} JojoABM 8SIaAUl 8Y) Jo uonisodwiiadns [enjoe ay) SMOYS 1asul ay] i} 1seq ay Buipiaoid auids

G Jop.Jo ue yym ejep [eulbLIo sy} 0} WIojSUB.) 8SJOAUI JO 1} 8y} SeAodwi WIojSURI) Jo[oABM BUj JO JapJo ay} Buisealoul moy

@ suiweyar o} Buisiousp 18j9AeM aulds jo uoneoldde ay

"y, 8inbi4
18|9ABAA 8Y} JO JBPIO
14 € 4 I

[6861 6861 6861

(nwe) z/w

8861 8861

+ S 19pI0

€ 1epI0—
2 19pI0—
10/9nB A BUIAS | JOPI0——

ol

(wJiojsuel] 19|9AB\\ ©SIBAU| puR
BleQ MY Udsam]aq)
a1ewiisg ey} 4O Jolig aAlie|ay

00}




ver-"-Om ~ 4030 Fabian Way
Palo Alto, CA 94303
Accuracy matters®

While this technique shows promise for removing the high frequency noise, the
user must define a suitable mother wavelet and determine which components of the
transform matrix to eliminate, with nothing to guide them but trial and error.
Unfortunately, the spline mother wavelet used in this example failed in other examples
containing multiply charged higher molecular weight polymers and proteins in an ESI
spectrum on the same mass analyzer. There are also rigorous constraints on functions
that can be used as mother wavelets (i.e., they must be infinitely differentiable).
Furthermore, every time the mass range of the analyzer or any of its tuning parameters
are changed, these user-adjustable parameters must be re-optimized.

The Downside of Smoothing

All of these smoothing techniques are designed to remove the noise that exists at
higher frequencies (lower wavelengths) than that of the analyte peak widths. However,
all of these methods are data destructive, eliminating metadata about the spectrum that
can be useful for downstream spectral analysis or peak quality measurements. Finally,
any medium wavelength (lower frequency noise) not eliminated by baselining or below
the detection threshold will still be present in the spectrum, confounding the centroiding
results (Figure 7.5).

1074
1 | ——Baseline-Subtracted
Spectrum
10° |- Whittaker Smoothed Regions of Baseline
] Spectrum (A=0.25) Distortion due to
] MCP Saturation L
10°4 Uncorrected by L
3 Baselining or Smoothing E
o 10%4 -
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>
8 ]
10° 3
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4l |
10° Ll 4ig S I —R I L
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Figure 7.5. Residual medium frequency noise (due to detector saturation) in the

Whittaker-smoothed TOF spectrum (Figure 7.2). Baseline subtraction
reduces the lowest frequency noise. The baseline-subtracted spectrum
was smoothed with the Whittaker smoother (A=0.25) to suppress the
high frequency noise. However, the medium frequency noise (that
between the frequency of real peaks and the low frequency noise of
baseline shifts or “float” due to ion saturation of the MCP detector) is still
evident in the regions indicated.
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8. THRESHOLDING

Thresholding is a procedure to discriminate spectral information that contains
sufficiently strong and differentiated signal levels to be accepted as containing reliable
peak information, versus the remaining spectral information that cannot be adequately
differentiated from noise. The threshold is always based on abundance, but the
threshold does not have to be constant with m/z and may vary locally (if the software
supports that). The difference between a threshold and a baseline is that a baseline
attempts to estimate the average level of noise superimposed on the spectrum, whereas
a threshold attempts to estimate the interface between the noise and the smallest
reliably detectable peak.

Some of the same methods used for spectral baselining can also be applied to
the problem of thresholding with slight changes in parameters®. For example, the
Asymmetric Whitaker smoother can be weighted to the data above the cubic spline
rather than below. Yet all the same problems of estimating proper user-adjustable
parameters remain, but in the thresholding application are made more complex because
there is no upper bound to limit the result (i.e. the peaks rise in the same direction as the
noise variance, whereas with baselining the noise variance is determined in the opposite
direction of the peaks). For example, a least squares regression may bisect the spectral
noise or rise above the smaller isotopic peaks depending on the relative peak
abundance compared to background noise, and iterative polynomial fits with subtraction
of the points below the regression will ultimately move the threshold to the apexes of the
highest n peaks, where n is one more than the order of the polynomial regression.

Using the Signal-to-Noise Estimate for Thresholding
A Synthetic Example

It is possible, however, to use the estimated maximum signal-to-noise level
(determined by subtraction of the median baseline and reflection of the negative
residuals)® as a threshold for peak detection. We illustrate this by the following
example. In this example a synthetic TOF spectrum was constructed containing the full
isotopic patterns of known composition peaks with monoisotopic peaks of 500 counts
(Figure 8.1). Noise was superimposed over this spectrum at an average of 15 counts
(varying randomly between 0 and 30 counts).

%2 Spectral Baselining.docx
% Spectral Signal-to-Noise Determination.docx
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Figure 8.1. A synthetic TOF spectrum produced from 31 known chemical species
and their predicted isotopic abundances. The monoisotopic peak of
each species was set to 500 counts. A 15 count average noise was
superimposed over the spectrum, varying between 0 to 30 counts
randomly by mass bin. The 15 Count median baseline is also shown.

Following the procedure outlined previously for estimating the spectral signal-to-
noise variance,* the median baseline was subtracted and the noise variance below zero
counts was reflected into the positive count domain. The distribution of noise variance
was then modeled as a normal distribution with 1 sigma = 8.4045 Counts.

The baseline-subtracted spectrum was then centroided using mMass v5.3.0%
with constant absolute abundance thresholds proportional to different multiples of the
modeled noise variance (n times sigma). Since all peaks present in this spectrum are
known with certainty, it is possible to determine the Positive Predictive Value (PPV,
Equation 8.1), the False Negative Rate (FNR, Equation 8.2), and the Fraction of
Observable Peaks (Equation 8.3) that were detected at each threshold level (Figure 8.2).
Observable peaks are defined as those known peaks with theoretical abundances above
the threshold level.

In all cases the allowable mass error of the centroid was + 2.5 times the intrinsic
mass spacing of the spectrum (+0.0005 Da"®). Duplicate detection events (i.e., where a

¥ Spectral Signal-to-Noise Estimation.docx

% M. Strohalm, Kavan, D., Novak, P., Volny, M., Havli¢ek, V., “mMass-Open Source
Mass Spectrometry Tool v5.3.0,” Anal Chem, 82:4648-4651 (2010).

© 2016 Veritomyx, Inc., All Rights Reserved. 46



secondary noise peak was superimposed near the apex of the known peak) were
eliminated with the secondary centroid classified as a False Positive detection event.
False Negative detection events were established based on the failure to detect any
known peak whose theoretical abundance was above the threshold. No distinction was
made between noise being added to the abundance of a peak and adventitious
detection of pure noise within the mass tolerance of a theoretical peak but not riding on
the sides or apex of the theoretical peak.

T iy
PPV — . .7'ue Positives _
(True Positives + False Positives) (8.1)
FNR — F.alse Negatives .
(T'rue Positives + False Negatives) (8.2)

True Positives + False Negatives

FractionofObservable Peaks =

Total Number of Observable Theoretical Peaks (8.3)
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Figure 8.2. The Positive Predictive Value (PPV) and False Negative Rate (FNR)

determined as a function of threshold value. The threshold value is
cited in multiples of the estimated noise variance (o). One o implies
84.13% of the estimated noise is below the detection threshold. At 2
and 3 o, respectively 97.72% and 99.87% of the noise is below the
threshold. The Fraction of Observable Peaks (i.e., peaks detected
versus the known synthetic peaks with abundances above the detection
threshold) detected at each threshold is also shown.
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High numbers of false (noise) peaks are detected until the threshold gets high
enough to clear the inter-peak noise just before the 20 threshold. These False Positives
adversely affect the PPV in this region as well. These noise peaks sometimes align
within the mass tolerance of observable peaks that would normally go undetected since
they were below the detection threshold. When this happens they are counted as True
Positives, even though they may really be noise. These residual noise peaks account
for the nearly 20% over-detection of theoretical peaks in this threshold region. While
perfect PPV is asymptotically approached at thresholds between 4 and 60, the false
negative detection rate is nearly constant (around 10%) at all threshold values. This is
because each peak contains some superimposed noise on its sides and apex. This
noise can shift the apparent peak outside the mass tolerance window of the theoretical
observable peak, resulting in a False Positive. Alternatively, if the noise variance is
below the median baseline, it can lower the measured apex of smaller isotopic peaks
below the threshold of detection.

The synthetic spectrum shown above provides a useful demonstration of the
basic signal-to-noise thresholding technique. It shows that by statistically eliminating
increasing amounts of the spectral noise from between 97.7% (20) to effectively 100%
(40) that the relative proportion of true peak identifications improves dramatically, with
little loss of real information content. However, it is a contrived example where all details
of the problem are known a priori and accounted for in the solution.

Application to a Real Spectrum

In the following example the same principles are applied to a real TOF spectrum.
This scan (Figure 8.3) was selected randomly from an LC/MS plasma lipidomics run.
The PeaklInvestigator™ approximation of the median baseline was applied (as shown)
and the spectral noise estimated by reflecting the noise variance calculated below this
baseline above the baseline.

A more detailed analysis of the spectrum in different mass regions (Figures 8.4a,
b, and c) suggests that the bulk of the spectral noise will fall below a 2-4c¢ S/N threshold.
However, there are some regions of localized baseline variations that are not adequately
modeled by the baseline and corresponding s/n threshold near 122 Da (Figure 8.4a),
788 and 812 Da (Figure 8.4b). These shorter wavelength localized baseline variations
are commonly associated with detector saturation events in TOF and ion trap spectra.
The wavelengths being only slightly longer than that of the peaks, is ignored by the
PeaklInvestigator™ baselining algorithm, which focuses on the longest wavelength
baseline variations. Since they are above the baseline they also would not be reflected
in any S/N threshold.

By subtracting the baseline, the S/N threshold becomes constant across the
mass range (Figure 8.3), and the baseline-subtracted spectrum can then be centroided
by mMass since that algorithm only accepts flat threshold values. It should be noted,
however, that the s/n threshold may be variable with m/z in some spectra, but variable
thresholds are not accommodated in most centroiding software programs. In this case
after baseline subtraction a constant threshold can be assumed and mMass centroiding
was performed on the baseline-subtracted scan with progressive threshold levels
corresponding to multiples of the standard deviation of the noise variance. This process
was repeated for each of the scans immediately preceding and following this center scan
in the LC/MS series. Any differences between the actual median noise level and
associated noise variance between the three scans are thus eliminated and the no
thresholds of each can be directly compared, even if the absolute values of the
thresholds may be different.
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Figure 8.4. Close-up regions at the low, middle, and high mass ranges of the LC/MS scan
shown in its entirety in Figure 8.3. These figures suggest that a signal-to-noise
threshold between 2 and 4 times the overall noise variance would provide a
dynamic threshold above the baseline noise over much of the spectrum.
However in the area of the largest peaks (700 to 900 Da), the local baseline
appears elevated by detector saturation in these regions. This localized baseline
variation is of too small a wavelength to be adequately modeled by the
PeakInvestigator™ baseline and so is not reflected in the corresponding S/N
threshold. The same situation may be seen to a lesser extent near 122 Da in
Figure 8.4a.

Peak Identities

Since the identities and abundances of the species present in these scans are unknown,
it is necessary to define which centroids will be accepted as real (positive) peaks and which will
be classified as noise (i.e., negatlve peaks. Within a mass tolerance of + 3 times the intrinsic
mass spacing (z 0.0005 Da , all the centroided peaks found within the three consecutive
scans were identified as posmve or negative detection events based on the following criteria:

* A positive peak results from:

a) any peak seen in the central scan of the series that is also seen in at least one
of the adjacent scans at greater than 50% relative abundance (a true positive),
and

b) any peak that appears in both adjacent scans but fails to appear in the central
scan at greater than 50% relative abundance seen in the adjacent scans (a
false negative).

* A negative peak results from:

a) any detected peak in the central scan that can not be confirmed in either
adjacent scan at greater than 50% relative abundance (a false positive), and

b) any peak seen in either adjacent scan that is not confirmed in the central scan
or the other adjacent scan at greater than 50% relative abundance (a true
negative).

© 2016 Veritomyx, Inc., All Rights Reserved 51



The resulting distributions of positive and negative peaks plotted by their centroided
abundances is shown in Figure 8.5. As we have seen previously,* the abundance distributions
of positive and negative peaks overlap considerably. The goal of any thresholding algorithm is
to discriminate between these positive and negative detection events, retaining as many of the
positive peaks, while discriminating against as many of the negative peaks as possible.
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Figure 8.5. The abundance distribution of positive and negative peaks detected by mMass

centroiding of the PeakInvestigator™ baseline subtracted scan by the criteria
identified in the text.

Receiver Operating Characteristic (ROC) Analysis

Receiver Operating Characteristic (ROC) analysis can be applied to the problem of how
well a threshold discriminates between two distributions.”” Depending on the threshold value,
the abundance of any positive peak may be above the threshold and is counted as a true
positive (TP), or may lie below the threshold value and is counted as a false negative (FN).
Similarly, the abundance of any negative peak that is above the threshold value is counted as a
false positive (FP) or is counted as a true negative (TN) when below the threshold value.
Sensitivity and specificity values are determined for each threshold value from the peak counts
in these four categories using equations 8.4 and 8.5. Note, as the threshold is raised, more
positive peaks will move from TP to FN and negative peaks from FP to TN, suggesting that
sensitivity will drop and specificity will increase as the threshold rises.

TP

S ittty = ————
ensitivity TP+ FN (8.4)

% Spectral Baselining.docx
% Reciever operating characteristic, https://en.wikipedia.org/
wiki/Receiver_operating_characteristic (accessed 21Jul2016).
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TN

Specificity = FPLTN

(8.5)

By plotting the sensitivity against 1-specificity determined for each threshold value, an
ROC curve is constructed (Figure 8.6). If no discrimination is seen between the two peak
distributions the ROC curve would lie on the diagonal between 0,0 and 1,1. The more
discrimination that the threshold provides between members of the two distributions, the closer
the ROC curve will approach the upper left corner (1,0) of the graph. The area between the
actual ROC curve and the diagonal is called the area under the curve (AUC) and is a measure
of the total difference between the two distributions. The AUC has a maximum value of 0.5 and
a minimum of zero. The point of maximum ROC curve deviation from the diagonal is called the
Youden index and corresponds to that threshold providing the greatest discrimination between
the two distributions.
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Figure 8.6. The Receiver Operator Characteristic (ROC) curves determined for the LC/MS

scan of Figure 8.3 both with and without baseline subtraction. In both of these
curves a flat threshold was applied over the entire spectrum during centroiding to
generate the ROC curve. The area under the curve (AUC) shows that only
37.4% of the positive and negative peaks can be discriminated based on
abundance alone, after baseline subtraction, and 31.7% without prior baseline
subtraction. Youdon Indicies (optimum thresholds) before and after baseline
subtraction were 10 and 18 counts, respectively.

The AUC (0.187) from figure 8.6 suggests that only 37.4% of the positive and negative
peaks (Figure 8.5) can be discriminated using the signal-to-noise threshold after baseline
subtraction. A similar ROC analysis of the raw spectrum (centroiding without baseline
correction) produces an AUC of 0.159, suggesting only 31.7% of the positive and negative
peaks could be discriminated without any baseline adjustment. Therefore, baseline correction
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prior to centroiding yields nearly 18% better signal to noise discrimination. The position of the
Youden index is at 0.50, which corresponds to the optimum s/n threshold level for this
spectrum. The obvious remaining question is why does a flat threshold (either s/n or absolute
counts) produce such poor peak discrimination results even after baseline correction?

Remaining Detection Issues
Mid-Frequency Baseline Distortions

By subtracting the Peaklnvestigator™ dynamic baseline the longest wavelength (lowest
frequency) variation in the baseline is effectively removed from the spectrum providing more
consistent centroiding results for a flat threshold. The s/n analysis effectively accounts for the
shortest wavelength noise variation in the spectrum. What is left after applying each of these
corrections is the medium wavelength noise (i.e., that which approaches the inherent peak width
in wavelength).

Some of this medium wavelength noise is seen in the baseline distortions around the
larger peaks in the spectrum (particularly Figure 8.4b). It is readily seen that the mMass
centroiding method over-estimates the abundance of those peaks riding on top of the medium-
wavelength baseline distortion in the vicinity of larger peaks (Figure 8.7). This overestimation of
peak abundance artificially moves these centroids above the threshold s/n value, causing the
retention of FP detection events. When the threshold is raised, TP peaks in regions of the
spectrum unaffected by detector saturation are then lost as FN events. Note that the
abundance distortion in peak intensity in this example exceeds two orders-of-magnitude.
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Figure 8.7. Centroids (for the optimum 0.50 s/n threshold) determined for the baseline-
subtracted spectrum of Figure 8.3 for peaks near the most abundant peaks (and
the regions of baseline distortion these create). The mMass centroiding method
is drawing its centroid abundance from the baseline (zero) to the peak apex.
Because of the localized baseline distortion around the abundant isotopic series
between 810.5 and 815 Da, what would normally be considered interpeak noise
is now larger than the threshold and kept in the peak list. The spectrum is shown
on a log(abundance) scale to better illustrate the localized baseline distortion of
over 1000 counts from the baseline.

Superimposed Noise on Peaks

Another source of peak detection errors is caused by the superimposition of noise on top
of the peaks themselves. The mMass Peak Picking is a standard local-maxima based
centroiding algorithm based on the first and second derivatives of abundance with m/z. Any
putative peak is determined from the local derivative and its abundance (which must exceed the
flat threshold abundance criterion provided by the user). The centroid height (peak abundance)
is drawn from the baseline (zero) through the center of mass of the peak to the interpolated line
of the spectrum above it. So any noise on the side of a peak that causes a detectable
derivative, carries with it the abundance of the underlying peak raising it above the threshold.
An example is shown in Figure 8.8 (at 136.85 Da) where the noise peak sits on the side of main
peak (at 136.79 Da). The Centroid (base to apex is greater than the 1o threshold applied, but
the peak height from the extrapolated side of the main peak would be less than that 1o
threshold.

1 " " " 1 " " " 1 " " " 1 " " " 1
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Figure 8.8. Centroids determined for the baseline-subtracted spectrum of Figure 8.3 at a

10 SIN flat threshold. The peak detected at 136.85 Da is a False Positive
created by noise on the side of the peak that is higher than the 1o S/N

© 2016 Veritomyx, Inc., All Rights Reserved 55



Threshold. The centroid abundance of this peak includes part of the neighboring
peak upon whose shoulder (dashed line) it rides.

The two remaining detection issues, then, are: 1) adapting the centroiding algorithm to
deal with local variations in the spectral baseline of wavelengths approaching that of the peak
width and 2) creating a centroiding algorithm able to detect and quantitatively deconvolve peaks
overlapping the sides of other peaks to generate a more appropriate centroid abundance value
for each deconvolved peak.

9. SPECTRAL PEAK CENTROIDING

At the heart of every mass spectral analysis is the detection, location and quantification
of the real analyte peaks in the mass spectrum. These activities are all accomplished as part of
“centroiding,” which converts the mass spectrum as precisely as possible into a list of peak
masses and abundances (a “mass list” or “peak list”). By the classic definition, centroiding is
the process of determining the center of mass of the detected analyte molecules that are
dispersed into separate detector bins surrounding the true m/z of the analyte molecule (i.e., the
“centroid” of the peak). However, peak centroiding actually consists of three distinct
mathematical steps: 1) detecting the presence of a peak, 2) determining the center of mass of
that peak, and 3) quantifying the abundance of that peak.

Peak Detection
Finite Difference Calculus

Basic calculus tells us that a peak in a continuous distribution is characterized by the first
derivative of that function passing through zero and the second derivative being negative at that
point. A mass spectrum can be thought of as a periodically sampled continuous distribution.
Therefore, finite difference calculus can be used to determine the local first and second
derivative around any mass point in that spectrum.

Assuming the peaks are roughly uniform in shape, the central difference equations
provide the greatest accuracy. In the simplest case, the first derivative of abundance (Equation
9.1) and second derivative of abundance (Equation 9.2) can be determined at any mass
position (m/z;) from the following equations:

d Abundance  Abundance (m/z;11) — Abundance (m/z;_1)
< d(m/z) >z - m/zit1 —m/zi-1 (9.1)
d? Abundance Abundance (m/zi+1) — 2 Abundance (m/z;) + Abundance (m/z;_1)
( d(m/z)? ) . (mlzgmles )2

(9.2)

The quality of the finite difference approximation to the actual first and second
derivatives depends on two assumptions. The first is that the m/z data is evenly spaced;
hence, the need for accurate spectral decompression.®® While m/z data is only truly evenly
spaced in ion trap spectra, the variation in the m/z spacing around any given point is generally
small enough to be ignored in the above calculation for all other analyzer types. The second
assumption is that noise is small relative to the change in signal from point to point in the
spectrum. Where the peaks are large, this second assumption is reasonably valid, but as the
peak abundance starts to approach that of the spectral noise, single points of random noise can
be easily mistaken for real peaks. Conversely, nearly isobaric partially overlapped peaks can
be ignored if their abundance is low relative to that of their nearly isobaric neighbor.

% Spectral Data Compression and Decompression.docx
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We can see the effect of noise on finite difference peak detection in Figure 9.1. Here we
have a synthetic TOF spectrum of an isolated 500-count peak with superimposed random noise
of between 0 and 30 counts. The first and second derivatives for each of the members of this
series are shown as are the resulting centroids. Noise superimposed on the tailing edge of the
main peak is detected as additional peaks above the threshold value.
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Figure 9.1. Finite difference peak detection applied to a synthetic baseline-subtracted TOF

spectrum of a singly-charged 500-count monoisotopic peak with superimposed
random noise of between 0 and 30 counts. The centroiding threshold was set at
10 (15 counts over baseline). The resulting centroids are shown.

The obvious and traditional solution to this inherent problem of false positive detection
using finite difference centroiding is to smooth the spectrum. We have independently presented
arguments against spectral smoothing as applied to baselining in that all such techniques are:
1) intrinsically data destructive and 2) require the specification of at least one user-adjustable
parameter.** However, they present the only solution to the false positive peak detection
problem inherent in the finite difference method for peak detection. Smoothing techniques and
their limitations are discussed separately.*

Apex Finding

% Spectral Baselining.docx
** Spectral Smoothing.docx

© 2016 Veritomyx, Inc., All Rights Reserved 57



A second approach to peak finding is to start at the most abundant apex in the spectrum
and work downward until the threshold is reached. However, a mass spectrometric peak is
wider than a single mass point. Hence, the mass points leading up to any apex may also be
higher than the apexes of other peaks in the spectrum. Therefore, this peak detection method
necessarily must be accompanied by some concept of the general width or shape of a peak, to
preclude multiple imperfect detections of the same peak in the mass list by blocking the
selection of another apex from some mass range around each apex already called.

Alternatively, the highest abundance actual mass point next to a peak determined by
finite difference methods can be chosen as the mass and abundance apex. Since the true peak
may fall between two mass points, the best mass resolution for apex picking is the + distance
between the neighboring m/z points in the spectrum. Where nearly isobaric peaks overlap, a
peak model or width guide used to block multiple detections of the same peak may also block
the detection of a partially overlapped neighboring peak.

Accurate Peak Mass Determination
Center of Mass (Traditional Centroiding)

The center of any object can be defined mathematically by least squares fit of the
distances from each sampled position on the surface of that object measured to a common
center point (Equation 9.3). This is illustrated in Figure 9.2. One user-specified variable in this
calculation is which sampled points should be used in the objective function. Itis common to
use only those points within some abundance of the apex since the larger the abundance
associated with any mass point, the less the effect spectral noise should have on this
calculation. In the absence of spectral noise with a perfectly symmetrical peak (e.g., a
Gaussian) the center of mass would be the same no matter which points are used for its
calculation. The more asymmetrical the peak shape, however, the more the centroiding
abundance cutoff will affect the precision of the center of mass calculation (Figure 9.2).

min lz ] = Z [(m/zZ — n%/zc,.jmggr)2 + (Abundance; — Abundcmcecemger)2
@ (9.3)

Many variations on this basic approach are possible. For example if only 4 points are
used, the resulting system of simultaneous equations and be solved explicitly.*' Alternatively,
abundance weighted moments of the points can be used to give more weight to the higher
abundance values.*

%

The challenge in this approach is defining what is part of a peak and what is not. The
presence of any overlapped nearly isobaric peaks will skew the center of mass calculation with
this method unless there is a way to determine where the second peak starts (e.g., finding a
trough between two peaks).

Even with a known isolated peak, as shown in Figure 9.2, even small peak asymmetries
can cause variations in the center mass, depending on which points are used in the centroiding
objective function. Therefore, it is typically important to re-calibrate the masses of the centroids
after centroiding and to use a consistent cutoff (% of apex height) to centroid all peaks in a
spectrum.

* MZmine Development Team, MZmine 2.3 User Manual, Exact Mass Calculation, pg. 19
(2011), http://mzmine.sourceforge.net/manual.pdf (accessed Oct, 10, 2016).

2 Agilent Technologies, Mass Accuracy and Mass Resolution in TOF MS, pg. 13 (Oct, 2011),
http://www.agilent.com/cs/library/eseminars/public/Mass%20Accuracy%20and%20Mass %2
OResolution%20-%200ctober%202011.pdf (accessed Oct, 10, 2016).
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Figure 9.2. Determination of the center of mass of a mass spectral peak using all points

within 30% of the peak apex abundance and all within 80% of the apex
abundance. Note, the calculated center of mass shifts by 2 ppm between these
two point selections because the peak shape is asymmetrical.

Fitting of Peak Models

An alternative to classical centroiding is to define a model peak that is fit to the spectrum
at each spectral apex. Usually a Gaussian* * peak shape model is used, but other model
distributions can also be applied.* Consistent instrument-specific deviations from the model
distribution can also be calculated and added to the core peak shape model to improve the
quality of the fit where necessary.*® A major benefit of this approach is that spectral noise is
effectively averaged out by the model fitting process. Both mass and abundance are
determined simultaneously when the model is successfully fit to the experimental peak.

**Wang, Y., Methods for operating mass spectrometry (MS) instrument systems," US6,983,213
(3 Jan 2006).

* Hall, M. P. et al., "Mass defect tags for biomolecular mass spectrometry," J. Mass Spectrom.,
38:809-816 (2003).

*> Leopold, P. et al., "Peak shape self-modeling for low abundance analytes in complex
mixtures," http://www.positiveprobability.com/POSTERS/2006Modelling.pdf

*®Wang, Y., “Methods for operating mass spectrometry (MS) instrument systems," US6,983,213
(3 Jan 2006).
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The primary disadvantage of this approach is that an appropriate peak model (or
characteristic deviation from a known model)* must be determined for the spectrum of interest.
This can be exceptionally difficult where the peak shape varies with m/z as in all mass analyzer
types except ion trap. Even in ion trap analyzers the peak shape depends on the time spent in
the trap (i.e., becomes narrower at longer trap retention times). Any change in instrument
tuning parameters or analyzer mass range also forces changes to be made in the peak model.
Therefore, if the model is drawn from the spectrum itself, it must be based on well-isolated
training peaks within a narrow m/z range of the target peak to which it is applied for centroiding.

This still leaves the issue of where to apply peak models to the spectral data (i.e., peak
detection discussed above). One approach is to start at the most abundant apex and work
downwards until the threshold of detection is reached. If the peak model adequately explains
the peak it can be subtracted from the spectrum with minimal residual (i.e., the residual error is
less than the threshold specified). The next highest apex in the residual spectrum is then fit with
the model, the model subtracted and this process repeated, until there are no longer any
residuals above the spectral threshold. While computationally laborious, the basic principle
appears sound on the surface.

Problems arise, however, when there is more than one nearly isobaric peak near the
apex forcing the experimental peak to deviate from the peak model, or the single peak shape
model does not adequately explain the observed peak shape and leaves a residue higher than
the threshold, which becomes a false positive detection on a subsequent pass. Overlapping
peak abundances are additive, so the presence of a partially-overlapping, nearly-isobaric, side
peak increases the apparent abundance at every mass point of overlap, and alters the center of
mass of any peak with which it overlaps. In the presence of such a peak overlap, the first peak
model fit to the highest apex will carry both a mass error and abundance overshoot. After
subtraction of the first fitted peak model, the resulting residual peak(s) will also exhibit shifted
center(s) of mass, and its (or their) abundance(s) will then be under-estimated by fit of the
second model. This is illustrated in Figure 9.3.

*”Wang, Y., Methods for operating mass spectrometry (MS) instrument systems," US6,983,213
(3 Jan 2006).
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The method of fitting the model to the spectrum is also an important decision. The
observed experimental mass points may straddle the actual center of mass position, so the
observed peak apex may not be co-located with the centroid. Each peak in the spectrum also
has a unique abundance associated with its centroid, which is not simply the highest observed
point in the experimental peak, but must be determined during model fitting. So, optimization of
the model fit must allow both mass and abundance shifts of the model, typically through
minimization of the least squared residual error of all the abundances that make up the rising
and falling edges of the peak. The model abundances must be recalculated at each measured
mass point every time the mass position of the model is shifted. Then there is the problem of
which experimental and model points to use in the optimization. Should the data used in the
least squared error calculation be limited to the width of the model peak or to those above the
S/N threshold? For the same average noise level, there is a higher percentage abundance
error in experimental mass points that are close to the threshold than for mass points that are
higher in abundance; therefore, should the former be discounted or eliminated from the least
squares objective function of the optimization? Since noise error is always additive to the peak,
should just the positive residuals be included in the objective function and the negatives
ignored? There is no clear and unambiguous guidance in the literature to answer these
questions.

More importantly, how should the model fitting algorithm decide when more than one
model should be fit to a given peak (as in the example of Figure 9.3B)? Where two or more
nearly isobaric peaks are known or suspected, the number of models to apply could be
specified by the user, as in MassWorks™ (Cerno Bioscience, Norwalk, CT); however, this
cannot be automatically applied to unknown peaks without some goodness of fit criteria being
used to justify the addition of another peak model.

This brings us to the problem of when to stop a serial model peak-fitting process. As
discussed previously,*® noise is always additive in mass spectrometry. Standard (parametric)
statistical methods (e.g., goodness-of-fit ANOVA or %?) cannot be applied to this problem, as
they produce random variations in the p-score as subsequent peaks are added to the fit. In the
example of Figure 9.3b, the two model fit to the overlapped peak pair at 201 Da generates a
lower residual error than the single model fit and is better aligned with the theoretical masses
and abundances, but the goodness-of-fit ANOVA p-score of the two model fit is higher than that
of the single model fit. Yet, adding a third model to the fit improves the p-score over that of
either the single or two model fits, even though there is little improvement in the residual error
over the two model fit. The underlying problem is that experimental peaks are either over-fit or
under-fit by model peaks because of the superimposed one-sided spectral noise. The standard
goodness-of-fit ANOVA implicitly assumes that the noise is evenly distributed across both sides
of the model curve, when the reality is that it is distributed only to one side. Therefore, standard
parametric statistical methods fail to reliably optimize the number of partially-overlapped peak
model fits. Furthermore, unless a limit is placed on the number of simultaneous models applied
to a particular apex, smaller and smaller model peaks will continue to be added to the same
peak until all the spectral noise above the threshold of detection is completely modeled.

Another approach is to insert a single peak model at every mass point above the
threshold in the spectrum, and not allow these models to move in the mass dimension. The
resulting over-specified sparse matrix of simultaneous equations can then be solved for the
global least squares height of all the models, and all those models with optimized heights less
than the threshold eliminated as noise. The remaining model heights are then re-optimized in
both the mass and abundance domains. This approach creates a massive n x m matrix
optimization process, where n is the total number of mass points in the spectrum file and m is

8 Spectral Characteristics.docx
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the number of non-zero abundance points in the spectrum file (i.e., m models). Furthermore,
this process results in loss of mass precision since the closest that the centroid of any model
can get to the true mass is * the intrinsic mass spacing of the spectrum at that mass position.
In a typical mass spectrum, peaks are only 5-7 mass bins wide, so the mass accuracy of this
method is effectively limited to 1/5 to 1/7 of the spectral peak width, which would constitute an
unacceptable reduction in mass resolution. Furthermore, where the true measured peak apex
falls between two experimental mass points, this method has a tendency to fit two models of
half height into the spectrum at that peak.

The challenges posed by peak model fitting have greatly inhibited its adoption, and finite
difference peak detection methods continue to prevail as the method of choice in almost all
spectral centroiding software packages. MassWorks™ (Cerno Bioscience, Norwalk, CT), which
continues to apply a modified-Gaussian peak model fitting strategy, is the only commercial
exception noted at this writing.

Abundance Quantification
Continuum Spectrum Intersection

Once a center of mass has been determined for a peak, there are two basic options for
determining its abundance. The simplest option is to draw a vertical line from the baseline (or
threshold) up to where it intersects the spectrum (or smoothed spectrum). If another partially-
overlapped nearly isobaric peak is present, the abundance of both peaks will be over-estimated
by this method. This can be easily visualized in Figure 9.3B, where the true heights of the
overlapped nearly isobaric peaks are shown, but if these were correctly detected by the
centroiding algorithm, then a line drawn to intersect the spectrum at each mass would
overestimate each of the peak abundances by about 50%.

Peak Area

An alternative approach is to estimate the area contained under the peak and use this as
the abundance. This has an advantage in detecting the presence of partially overlapped ions in
an isotopic pattern since the members of the isotopic series will not display the expected ratios if
overlapped by another nearly isobaric species. However, the challenge here is how to define
the ends of a peak. Is it where the peak intersects the threshold? If so, what happens when the
trough between to neighboring peaks is elevated above the threshold due to the overlap? Such
troughs can be found by finite difference calculus as positioned where the first derivative goes to
zero and the second derivative is positive. However, this simple boundary test fails to function
when the peak asymptotically approaches a constant baseline. This problem is common to that
experienced by every chromatographer in trying to determine the proper limits of analyte peaks,
and for which there has never been a fully satisfactory automated solution.

Use of Model Peaks

Where multiple peak models are fit to an experimental peak (e.g., Cerno MassWorks™),
the combined overlap may more effectively deconvolve the correct abundances of each of the
overlapped peaks versus the abundance results from standard centroiding. As discussed
previously, however, this assumes: 1) that the peak model is a good approximation of the peak
shape; and 2) that the number of overlapping peaks is known with certainty. The additive
composite of the multiple peak models is fit to the spectrum, so regions of spectral overlap are
not counted twice. For the example of Figure 9.3, fitting a pair of the Gaussian peak models
from 205 Da (Figure 9.3a) to the known peak pair at 201 Da (Figure 9.3b) results in one peak
disappearing to zero counts and the other peak centering to become the Figure 9.3b result.
Constraining both peaks to a minimum counts of 240 yields the results of Figure 9.4, where the
mass error for the first peak is 33 ppm and the abundance of that peak hits the 240 count
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constraint. Fitting multiple peaks is very difficult because the non-linearity of the model creates
lots of local minima.

600 t——— :
| | ——Raw Spectrum
——Peak 1 Model Fit
500 | ——Peak 2 Model Fit I
{ | ——Real Peaks
400 i
] Peak 2
Peak 1
0 201.00104 Da 2oy 21227 ba
c T 250 Counts 50 Counts
3 300- -
© Peak 1 Model Fit Peak 2 Model Fit
201.00773 Da 201.01227 Da
1 240 Counts
200 250 Counts i
100 R
O N N N v I v T T T T T I v T
200.9 200.95 201 201.05 201.
m/z (Da)
Figure 9.4. The synthetic spectrum of Figure 9.3b with two Gaussian models fit

simultaneously to the known nearly isobaric overlapped peak pair at 201 Da.

Peakinvestigator™

The rapidly increasing volume and importance of mass spectrometry in analytical
chemistry and the life sciences (including medical research and clinical diagnostics) have
created a need for a more automated and robust method to convert raw profile mass spectral

data into accurate mass lists for further processing. Such a new approach has been developed

by Veritomyx, Inc. and is accessed via their Peaklnvestigator™ software services.

PeakInvestigator treats the raw mass spectrum as a periodically-sampled continuous signal and

uses a proprietary self-trained algorithm to identify and quantify the features of that signal with

statistically-measurable precision. The advantages of this approach are:

no user-adjustable parameters

fully-automated and locally-adaptive baselining and statistically-determined

S/N thresholding for optimized sensitivity above background noise

reproducible and more precise masslists

fully-automated spectral detection and deconvolution of nearly isobaric

overlapped peaks, effectively providing up to four times the spectral

resolution of the native mass analyzer

statistical confidence (error bars) defined for the mass and abundance result

on every peak reported.
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While the algorithms are proprietary, it is possible to compare the results to the
alternatives described above.

Lipidomics Study

In an LC/MS/MS lipidomics experiment*®, human plasma samples from a diabetes study
were analyzed at 10K resolution on an Agilent 6530 and with their standard centroiding
software. An overlapped set of peaks were detected in the MS' spectrum only after tandem MS
analysis of the peak and confirmation by re-running the sample on a 100K resolution LECO
Citius instrument. The peaks were found to correspond to phosphatidylethanolamine (36:2) and
plasmenol-phosphatidylcholine (P34:1). These two nearly isobaric species were unresolved by
standard centroiding methods in any of the 10K resolution MS scans in the entire study.” Nor
could they be resolved chromatographically since they were nearly co-eluting. The relevant
LC/MS scans for over 100 patients were provided to Veritomyx for PeakInvestigator analysis.
The Peaklnvestigator software was able to blindly detect and deconvolve both peaks (Figure
9.5) in scans for 98% of the patients, allowing them to finally be resolved chromatographically
(Figure 9.6). Not only did PeakInvestigator correctly identify and deconvolve the peak pair in
question, but it also found an additional 40 previously undetected pairs of nearly-isobaric peak
overlaps within the same samples, yielding a remarkable and unanticipated new discovery rate
opportunity.

*  PeaklInvestigator™ Deconvolution & Centroding Software: UC Davis Beta Collaboration-

Phase 1, https://veritomyx.box.com/s/v15u85f4b47nyge71nq7bnxedzy7dwul (Accessed
9/15/16).
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Figure 9.6.

"3 3% 40 45
Scan Number

Results of standard centroiding (Exact Mass in MZmine) versus Peakinvestigator
centroiding of the two nearly-isobaric peaks from each of the 20 LC/MS scans in
which either component eluted. The reported mass of the standard centroid
(Panel 6B) is seen to decline with increasing scan number as first one
component and then the other dominates the peak found. Versus the two
masses deconvolved and reported by PeakInvestigator, the mass offset of the
standard centroiding result is caused by the asymmetry of the peak shape
(Figure 9.5) as discussed in the text. Each component is correctly isolated by
PeakInvestigator with little overall mass drift. The corresponding abundance
chromatograms (Panel 6A) show the quantitative precision of PeakInvestigator
across the changing dynamic range of these two peaks. Peaklnvestigator is
uniquely able to provide both mass and abundance error bars (indicated). It
should be noted that error bars less than the sampling spacing of the profile
spectrum are effectively zero since the minimum mass tolerance of the
PeakInvestigator method is the intrinsic mass spacing of the spectrum
(discussed further in the text).
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Nearly Isobaric Admixtures

The following two admixtures of nearly-isobaric chemicals were prepared and analyzed
by ESI Q-TOF (Agilent 6550) at 20K resolution and by Q Exactive Plus Orbitrap at 100K
resolution.®® The spectra were acquired both in raw format and in centroid mode on the Agilent
instrument. The Agilent raw spectra were re-analyzed with Exact Mass standard centroiding
(MZmine v2.0) and by Peaklnvestigator.

The first admixture contained two components differing in mass by 90 ppm:
* 4-Imidazole acetic acid (C5H7N202" - [M+H"] = 127.050752 Da)
* 5-Aminoimidazole-4-carboxamide (C4H7N4O" - [M+H"] = 127.061986 Da)

These results are summarized in Figure 9.7. Panel A shows the acquisition in centroid mode on
the Agilent 6550, which produced a single centroid and an extraneous noise peak. Reanalysis
using exact mass (Panel B) produced two standard centroids differing by just 93 ppm (a 3 ppm
precision variance). However, the relative abundances of the two peaks were within 16% of
each other because they were drawn from zero until they intersected the spectrum curve. This
varies greatly from the 70% relative abundance difference seen in the fully-resolved Orbitrap
spectrum (Panel D). The Peaklnvestigator result (Panel C) also deconvolved the two peaks
with 92 ppm difference (a 2 ppm precision) and deconvolved the relative abundances of the two
species to a relative abundance difference of 67%, very close to the 70% difference found in the
Orbitrap result (Panel D).

The second admixture contained three components differing in mass by 65 and144 ppm,
respectively:

* N-Acetyl-L-ornithine (C7H15N203" - [M+H"] = 175.108267 Da)
* L-Arginine (C6H15N402" - [M+H"] =175.119501 Da)
* Ne,Ne+dimethyllysine (C8H19N202" - [M+H"] = 175.144653 Da)

These results are summarized in Figure 9.8. Panel A again shows the acquisition in centroid
mode on the Agilent 6550, which detected the second two of the three peaks at the correct 144
ppm mass tolerance. However, the relative abundances of these two peaks were reversed from
that of the Orbitrap result because of the added contribution of the first component to the
relative abundance of the second peak from which it was not resolved. Panel B again shows
the Exact Mass result from the raw spectrum, with only the second two peaks being resolved by
standard centroiding. In this case the mass difference between the two peaks was 147 ppm (a
7 ppm precision error) and the relative abundances of the two detected peaks were again
reversed because of the added contribution of the first component counts that were unresolved
from the second peak. Peaklnvestigator resolved all three peaks (Panel C) with mass
differences of 64 ppm for the first two peaks (a 1 ppm precision error) and a 142 ppm mass
difference for the second two peaks (a 2 ppm mass precision error). The abundances of the
three peaks were also much closer to that seen in the fully-resolved Orbitrap result (Panel D).

% Peaklnvestigator™ Deconvolution & Centroiding Software, Stanford Beta Collaboration,

https://veritomyx.app.box.com/s/u14tsrsrg36xrie 1okotpi9sdqv03zzg (Accessed 9/15/16).
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Accuracy matters®

Peptide Abundance in Orbitrap

4030 Fabian Way
Palo Alto, CA 94303

By determining the rate of stable isotope incorporation into proteins, (or their
constitutive peptides) the rate of protein synthesis in cellular systems can be estimated.
In such studies, it is critically important to use the full isotopic abundance of the peptides,
yet often multiply-charged states of these peptides can overlap and remain unresolved
from one another making it difficult to get an accurate measurement of all the members
of the isotopic pattern. In the following scan (Figure 9.9) we see the overlap of such
tryptic peptides. Peptide; consists of a doubly charged species of a peptide of the

nominal [M+H*] composition C3gHg:N11O12. Peptide, consists of the triply-charged
species of a peptide of the nominal [M+H+] composition CsgHgsN17047S1. The

3C, peaks

of both peptides are nearly isobaric in this 30K resolution Orbitrap spectrum. Standard
centroiding (Exact Mass in MZmine) fails to independently resolve these two species,
but Peaklnvestigator does quantitatively resolve the isotopic pair.

300000 — ' —
l —— Raw Spectrum
—— Standard Centroiding
] —— Peakinvestigator™
250000 -
AN I
] Peaks Unresolved by |
200000 Standard Centroiding |
] Peaks Quantitatively |
. 3+ 13 Resolved by
2 ] Peptide, C Peaklnvestigator™
3 150000+ -
8 1
13
< CZ 1SC
k 3
1000004 -
50000 B
0 - T 1 { T T T T T T 1 T T — T T
440 440.4 440.8 441.2 441.6
m/z (Da)
Figure 9.9. Overlapped second '3C isotopes of two peptides in an 30K resolution

Orbitrap mass spectrum are not detected by standard centroiding, but
are blindly and quantitatively deconvolved by Peaklnvestigator.
Peptides has the nominal composition CagHg2N+11O12. Peptide, has the
nominal composition CsgHgsN17017S+1. The isotopic vector angles for
each peptide compared to their theoretical patterns obtained from
standard centroiding (where the overlap is unresolved) show a 32.8%
and 19.9% errors respectively. PeakInvestigator quantitatively resolves
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these peaks improving the isotopic vector angle errors to 22.6% and
7.8%, respectively.

In stable isotope labeling experiments like these, Isotopic Vector Angle Analysis®'
is used to compare the centroided abundances to those expected from theory,
effectively incoporating the relative abundances of all members of the isotopic series. In
this case Peaklnvestigator™ provides an average of 46% better isotopic match for these
two peptides than could be obtained by standard centroiding methods.

Peak Error Bars

The statistical nature of the PeakInvestigator peak finding algorithms enables the
estimation of both mass and abundance error bars for every peak found. These error
bars are derived with statistical confidence. The reported values are +10 (68%
confidence) and can be multiplied by the appropriate 2-tailed Student's t-value for the
statistical degrees of freedom reported for each peak to get estimates for the statistical
confidence intervals.,*.

Mass Precision

Unfortunately, the mass spectrum is a sampled distribution in the mass domain.
Therefore, there is a lower limit to the measured mass precision (i.e., effectively, the
PeakInvestigator algorithm's intrinsic “Nyquist rate”®), which is one intrinsic mass
spacing.* It should be remembered that the units of the intrinsic mass spacing of any
mass spectrum are not expressed in units of mass (except for ion trap) but are related to
mass by simple mathematical relations. Therefore, the minimum mass precision of any
PeaklInvestigator peak is the mass equivalent of the intrinsic mass spacing of the
spectrum or the confidence limit, whichever is larger.

Abundance Precision

Abundance measurements are effectively continuous in a mass spectrum, but
are often reported as integer equivalents. Therefore, the abundance error bar reported
can only be as accurate as the least significant figure used to report counts.

Some recent AB/Sciex TOF analyzers use dynamic ion throttling to control ion
flow to the detector to prevent detector saturation. The corresponding mass spectrum is
automatically scaled by the ratio to which the ion stream has been throttled so that
continuity in abundance across the series of autoscaled spectra is maintained. This
process can make the minimum abundance error in any given spectrum a multiple of the
normal integer count spacing. Therefore, some care must be taken in applying the
Peaklnvestigator error bars to spectra of this type, since the intrinsic precision limit may
be something other than a single significant figure and will vary from scan to scan in an
LC/MS run on automated ion-throttled mass analyzers.

" Sokkalingam, N., Schneider, L., Tenderholt, A., Chu, F., Corillo, Y. E., Marshall,
A.G., Deconvolution and isotopic vector analysis for improved peak identification.
Poster presented at: 64th Annual Am. Soc. Mass Spec., 2016 June 5-9; San
Antonio, TX,
https://veritomyx.app.box.com/s/bm7xuw54mplgujdt4eojakybwnx9kodb (accessed
9/27/2016).

Confidence intervals, https://en.wikipedia.org/wiki/Confidence_interval.

Nyquist frequency, https://en.wikipedia.org/wiki/Nyquist_frequency.
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Deconvolution Resolution

Mass spectral resolution is often defined by the mass of a peak divided by the
width of that peak at half the peak height in Da (Equation 9.4). Therefore, resolution is a
dimensionless number. It is similarly possible to define the ability of any centroiding
process to correctly discriminate any two peaks in a mass spectrum, as the ratio of the
the average mass of the two peaks divided by the mass difference between the two
peaks (Equation 9.5). We can call this the Discrimination Resolution. As the distance
between the two peaks becomes negligible approaching the mass of a single peak at the
average mass position, this analysis can be taken one step further to define another
dimensionless number, Deconvolution Resolution. The Deconvolution resolution is
defined as the ratio of the discrimination and spectral resolution numbers (Equation 9.6).
This, of course reduces to the actual mass difference between any two peaks divided by
the width of an isolated peak in the spectrum at half its height, where the average mass
is the same as the mass used in the spectral resolution calculation.
peak mass (Da)

peak widthpqi f—peight (Da) (9.4)

Spectral Resolution =

average peak mass (Da)

Discrimination Resolution =
|peak; mass — peaks mass| (Da) (9.5)

Discrimination Resolution

Deconvolution Resolution = -
Spectral Resolution (9.6)

_ peak widthh(zlffheigh,t (Da)
|peak; mass — peaks mass| (Da)

Deconvolution Resolution represents the relative spacing between peaks in any
mass spectrometer. As the resolution of the mass spectrometer increases, its ability to
resolve two peaks becomes greater, yet the relative overlap of those two peaks
maintains a constant deconvolution resolution (Figure 9.10). Any mass spectrometer
can just begin to resolve two peaks of the same height at a deconvolution resolution of
1, where there is the beginning of a trough between the two peaks. It can easily resolve
peaks with lower deconvolution resolutions. The ability to deconvolve two peaks at
deconvolution resolutions above one is entirely dependent on the peak picking or
centroding software.
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Figure 9.10. The progressive overlap of two peaks as a function of Deconvolution
Resolution, a dimensionless variable that quantifies the degree of
overlap for adjacent peaks in mass spectrometer outputs at any
resolution.

If we evaluate the different centroiding methods presented above on their abilities
to blindly detect and deconvolve any two overlapped peaks on the continuum of
Deconvolution Resolution, we find that classic finite difference centroiding and peak
model fitting (using finite difference methods to locate the peaks as implemented by
Cerno Massworks ™) have limiting deconvolution resolutions of approximately one
(Figure 9.11).

When more than one peak is known (or suspected) at any given mass position, it
is possible to guide Cerno Massworks™ to a higher limiting deconvolution resolution, but
this can not be achieved on a blind basis as automatically delivered in Peaklnvestigator.
A limiting decovolution resolution of one corresponds to the point where the “saddle” or
trough between overlapping peaks is approaching the point of disappearance (Figure
9.10).

Peaklnvestigator multiplies and extends the limiting deconvolution resolution up
to four-fold over the current centroiding techniques discussed above, for peaks with
strong signal to noise ratios. Peaklnvestigator outperforms the other centroiding
methods for all peaks down to a signal to noise of 10 for any relative abundance of the
overlapped peak heights.
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Figure 9.11. The Limiting Deconvolution Resolution of PeakInvestigator and

standard centroiding methods, as a function of dynamic range of
overlapped peaks and signal-to-noise levels. The true Limiting
Deconvolution Resolution is between the solid and open symbols at
each condition because it can not be measured any finer than the
known spacing between peaks in alternative test spectra.
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