
  4030 Fabian Way 
  Palo Alto, CA 94303 

© 2016 Veritomyx, Inc., All Rights Reserved  1
 

MASS SPECTROMETRIC DATA PROCESSING 

by Luke V. Schneider 
Mass spectrometry is an analytical chemistry tool used for the separation of 

molecular ions by their mass, more properly their mass-to-charge ratio (m/z), and the 
quantification of their relative abundance in an ion stream.  For convenience, “mass” will 
be used as shorthand for m/z herein, except where specific m/z terminology will be more 
helpful. 

Like any tool there are correct or optimal ways to use it, and there are many 
incorrect ways that people have found to misuse this tool, resulting in corrupted or 
inferior information obtained from it in the process.  In the following series of articles, we 
attempt to describe the best practices for the analysis of mass spectrometric data. 

The mass spectrometer provides a measurement in terms of mass and 
abundance of the molecular ions in a stream of such ions.  In any analytical method, one 
must distinguish the precision (the intrinsic reproducibility of the measurement) from the 
accuracy of the result (how well do the peak mass and abundance agree with the true 
values).  Precision of the measurement is affected by chemical and instrument noise, 
fluctuations in room temperature, and by the digital sampling frequency and any non-
linearities of the detector.  Accuracy depends on how well the instrument has been 
calibrated, but may never be better (tighter) than the inherent precision of the 
measurement. 

1.  PROPERTIES OF MASS SPECTROMETRIC DATA 
The primary (raw) profile spectral data produced by the mass spectrometer data 

acquisition software—quantized mass and abundance data pairs that represent the 
sampled distribution of molecular ions inside the mass analyzer—is fundamentally the 
same in all mass analyzers.  The attributes of that raw (profile) data differ by the type of 
mass analyzer.  These differences are highlighted in the section on Spectral 
Characteristics and can have a critical impact on the processing of the raw spectral data. 

2.  DATA ANALYSIS PROCESS 
While the nature of the primary data generated is the same (mass and 

abundance), the goals of the analysis (i.e., how this data will be used) may be quite 
varied.  However, the initial steps in this process are common to all downstream 
analyses and uses of mass spectral data.  The first goal in all subsequent uses for the 
data is to identify within the raw (profile) data the discrete mass and abundance peaks 
associated with each analyte and their relative abundances that are present within the 
sample (i.e., converting the profile spectrum into a mass list of peaks). 

As shown in Figure 2.1 below, there are several discrete steps involved in 
converting the profile spectrum into a mass list, and many pieces of metadata about the 
mass spectrum that can and should be collected during this data analysis process, 
which can prove useful to improve the precision of the resulting mass list.  It should be 
emphasized that precision is all that matters in this process.  Accuracy correction, which 
generally depends on external calibration of the mass spectrometer, is properly applied 
to the final mass list, not to the profile spectrum. 

In these documents, we present the general alternatives used for each step of 
the process, along with their advantages and limitations.  We also provide 
recommendations for the best practices that should be followed to improve the precision 
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and sensitivity of the resulting mass list, and to collect the relevant metadata about the 
spectrum that can assist in defining how well the final result is known or understood.   

 
 
Figure 2.1. “Best Practice” steps in the process for converting raw (profile) mass 

spectrometric data into a mass list optimized for subsequent uses and 
analysis. Each of the steps of this process are detailed in subsequent 
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sections of this document series.  Those in red are background 
reference documents 

3.  SPECTRAL DATA COMPRESSION AND DECOMPRESSION 

Data Compression  
Mass spectral data is stored as mass and abundance data pairs in a data file.  

Most instrument manufacturers automatically compress this data file to save storage 
space and the amount of data that must be transferred from the instrument to the 
analysis software.  The methods employed to compress the spectral data files include: 

• retention of only significant digits from values (e.g., quantifying a mass 
to just four instead of six or more decimal places, and rounding 
abundances off to the nearest integer value) 

• conversion of the data to binary formats 

• removal of any points with zero counts (or counts below a user-
specified threshold) 

• removal of any points with constant abundance between the two 
anchor values at the edges of the constant range.  

Retained Significant Figures 

Most of these data compression techniques are reversible, except for significant 
figure truncation and the elimination of data below a user-specified threshold value.  
When the relevant and appropriate number of significant figures are maintained in the 
mass and abundance values, the data lost is typically insignificant.  However, this 
rounding or truncation error can still cause variation in the estimation of the intrinsic 
mass spacing (IMS), which must be taken into account during data decompression (see 
below).   

Thresholding  

With the exception of FT-ICR absorption spectra, which have been re-registered 
to a median abundance of zero counts, there is no data below zero abundance in mass 
spectra.  Therefore, zero removal is not considered data destructive.  However, when a 
non-zero, user-specified, minimum threshold is applied, all data between that value and 
the true zero is permanently lost, which creates issues for downstream spectral 
processing, and should always be avoided during original data acquisition and archiving. 

Data Point Compression 

Removing zero abundance points or using a variant of the Lempel-Ziv-Welch 
(LZW) compression technique1 to remove constant values between two anchor points, 
are both non-destructive compression techniques utilized in mass spectrometry.  
However, since both methods are in common practice by different instrument vendors, it 
may not be clear which method has been applied on a spectrum from an unknown 
source (see below).   

Binary File Conversion 

                                                
1  Lempel-Ziv-Welch File compression, https://en.wikipedia.org/wiki/Lempel–Ziv–

Welch (accessed 23 June 2016).  
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Binary data can typically be converted to more readable formats using 
MSConvert2 or other open-source MS file conversion software.  All vendors have 
released proprietary .dll files into open-source use for this purpose.  However, these 
libraries do not typically replace data points removed by zero drop or LZW compression 
schemes.  The reversal of binary data formats is beyond the scope of this paper. 

Spectral Data Decompression 
Importance of Decompression 

When mass spectral data files are compressed, information and statistical 
degrees of freedom are lost.  For example, the average counts in the mass spectrum 
shown in Figure 3.1 changes from 9.48 in the LZW-compressed version (87,707 data 
points) to 3.71 in the fully-decompressed version (178,402 data points).  Using the 
correct lower average counts as a threshold before centroiding, 67.3% more peaks are 
detected in this spectrum. The elimination of over 50% of the data points by LZW 
compression resulted in 67.3% of the peaks going undetected, because the threshold is 
not calculated correctly with those points missing. 

 
Figure 3.1. The CID fragmentation spectrum of the 2+ charge state of the peptide 

NQGPQESVVR from a Waters Q-TOF Premier mass spectrometer.  
There are 35,005 missing data points in the LZW-compressed file.  
When these points are returned to the spectral file, the average counts 
drop from 9.48 to 3.71.  Using the average counts from the compressed 
spectrum as a peak detection threshold, 67.3% of the total peaks would 
remain undetected in the compressed data file. 

                                                
2  MSConvert software, http://proteowizard.sourceforge.net/tools.shtml 
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Intrinsic Mass Spacing 

The keys to any mass spectral data decompression are to determine: 

• when a data point has been removed. 

• the mass value of the point(s) to be replaced. 

• the abundance value of the point(s) being replaced. 

The most critical step is to determine the intrinsic mass spacing for the spectrum.  
The masses in each type of mass analyzer are set on a periodic spacing.3  This intrinsic 
mass spacing (IMS) between data points is readily determined from the mass spacing in 
the spectrum itself.  For example, in the TOF spectrum above (Figure 3.1), the distance 
between mass points is expected to be constant on a mass to the half power basis (i.e., 
Δm/z0.5).  This is shown in Figure 3.2. 

 
Figure 3.2. The intrinsic mass spacing of the TOF spectrum from Figure 3.1 on a 

Δm/z0.5 basis.  The average IMS is 1.85 x 10-4 Da0.5, as represented by 
the lowest set of data points.  Each line above that reflects a larger gap 
in mass spacing, indicating missing data points in the compressed 
spectrum.  The multiple of the IMS (minus one) indicates the number of 
such missing points in that mass gap.  The scatter about the average 
IMS is caused by truncation error in the mass values (another data 
compression mechanism). 

Similar IMS graphs can be generated for the compressed spectral data from 
each mass analyzer type, but reflecting different powers for the mass calculation 

                                                
3  see section on Spectral Characteristics 
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(Table 3.1).  The mass points in an ion trap analyzer are evenly spaced in m/z (Δm/z, 
Da).  Orbitrap mass data is evenly spaced on the reciprocal of the square root of the m/z 
spacing (Δm/z-0.5, Da-0.5).  FT-ICR mass data is evenly spaced on the reciprocal of the 
m/z spacing (Δm/z-1, Da-1). 

 
Mass Analyzer Calculation Units 

Ion trap 
 

Da 
Time-of-Flight 

 
Da0.5 

Orbitrap 
 

Da-0.5 

FT-ICR 
 

Da-1 

       Table 3.1: Intrinsic Mass Spacing (IMS) for different types of mass analyzers.  
Mass Position of Decompressed Data Points 

Armed with a knowledge of the IMS for the spectrum, it is possible to detect 
compression gaps by looking for any adjacent mass values that differ by more than 1.5 
times the expected IMS for their position in the spectrum.  Furthermore, by dividing the 
Δm/zx for each gap by the IMS calculated for the spectrum, and rounding to the nearest 
integer, the number of missing data points in each gap is readily determined.  It is then a 
simple matter to add that number of mass values back into the spectrum in equally-
spaced increments in the proper (Δm/zx) domain for the mass analyzer. 

Abundance Value of the Decompressed Data Points 

The last piece of information needed is the correct abundance value for each 
decompressed point.  As described above, there are two basic types of data 
compression schemes.  The first is zero removal.  The second is characterized by 
anchor points of equal abundance that span the missing points gap.  By checking the 
abundance values on either side of all identified mass gaps in the spectral data, the 
specific type of compression can ascertained.   

Once all zero abundance values have been removed from a dataset, the 
remaining data may by sheer chance have equal nonzero abundance values on either 
side of the corresponding mass gap, effectively making that gap indistinguishable from a 
LZW compression gap.  Therefore, a zero removal compression scheme can only be 
robustly identified where at least one mass gap within the spectral data set contains non-
equivalent abundances on either side of the data gap.  An LZW type compression 
scheme is only robustly identified when both sides of all mass gaps have identical 
abundances. 

Orbitrap instruments are manufactured by a single supplier, and they always 
utilize only the zero removal type of data compression. 

4.  SPECTRAL CHARACTERISTICS 
A mass spectrum reports the measured mass to charge (m/z) ratio of molecular 

ions, generally by transforming the true detector signal data captured in the time domain, 
via calibration to yield final results in the m/z domain.  Since the charge of any given 
spectral peak can only be determined from its isotopic pattern of peaks, it is common to 
refer to the m/z as the mass when talking about isolated peaks and mass range when 
talking about the range of masses that are represented in a mass spectrum.   

In reality, therefore, a mass spectrum is built from the measured number of ion 
detection events counted in each detection bin, with a bin consisting of a slice of 
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detection time or frequency.  The detection bins are then mapped to the mass-to-charge 
(m/z) or mass range through the use of mass standards (molecular ions with known m/z 
peaks).  Since a single molecular ion may be tracked across multiple detector bins, the 
m/z mapping of the spectrum on the ordinate (x-axis) is at best approximate, and 
ultimately depends on the care taken to locate the underlying apex of the distribution of 
each molecular ion across multiple bins. 

Detectors have duty cycles that prevent capture of all ion detection opportunities, 
but they can also amplify detection events.  Furthermore, only molecules that are ionized 
can be detected.  Therefore, counts along the abscissa (y-axis) must also be calibrated 
before they can be used to quantitate the concentration of the molecules generating 
them. 

Ordinate (x-axis) 
The size of (or spacing between) detector bins is constant along the x-axis in the 

acquisition time or frequency domain.  However, the correlation of spacing between 
these time points and the mass to charge (m/z) ratio of the ions varies depending on the 
analyzer type.  Understanding the inherent correlation between the detector bin spacing 
and the range of m/z represented by each detector bin is critical for proper downstream 
processing of the spectrum, since it affects the width of each ion peak in mass units (i.e., 
the mass resolving power of the spectrum at any given m/z).  It also determines the 
limiting mass precision of any m/z or mass call, which can be no more precise than the 
width of a detector bin at that mass value.  Mass accuracy, which is distinguished from 
precision in analytical chemistry, is ultimately limited by the accuracy with which detector 
time bins are mapped to the mass domain in the final spectrum. 

There are also several traditional mass resolution measures that are useful for 
characterizing what a mass analyzer is capable of separating.  Resolution (a 
dimensionless number) is typically defined by the mass divided by the full peak width at 
half of its maximum height (PWHH) in m/z.  The inverse of PWHH Resolution is typically 
presented as parts per million (ppm) precision (i.e., an approximation of the mass 
difference at which a mass analyzer is expected resolve two nearly isobaric species as 
separate peaks with half the peak heights of each being non-overlapping).  The final 
resolution measure is the peak width at half height in Da.  One of more of these 
measures may be constant for any given mass analyzer. 

Ion Trap 

The detector bin spacing in ion trap analyzers is linearly proportional to m/z.  This 
means that every unit distance in an ion trap spectrum represents the same fraction 
(Δm/z slice) of the mass range of the spectrum.  If there are 1000 points in the spectrum 
covering a 100 Da range in mass, each point represents a Δm/z slice of 0.1 Da, which 
corresponds to the minimum precision with which the mass of any molecular ion could 
be determined .  If the mass range of the spectrum is reduced to 50 Da for the same 
sampling speed (i.e., 1000 points), then each point represents a Δm/z slice of 0.05 Da, 
or double the mass precision of the 100 Da range.  A consequence of this direct 
proportionality between detector bins and m/z is that the resulting peak widths are nearly 
constant with m/z in ion trap spectra (Figure 4.1).  However all other common measures 
of resolution vary with m/z in ion trap spectra. 



 

© 2016 Veritomyx, Inc., All Rights Reserved  

(a) (b) 
Figure 4.1: Two isolated peaks from different m/z ranges in the same ion trap 

spectrum of peptide fragments (a and b).  Peak widths are constant in 
the m/z and detector bin domains, but the calculated resolutions (peak 
width at half height) vary in all dimensions except ±Δm/z. 

Time-of-Flight (TOF) 

The detector bin spacing in TOF analyzers is proportional to the square root of 
the m/z ([m/z]0.5).  This means that every successive point in a TOF spectrum represents 
a larger fraction of the mass range than every preceding point.  The limiting precision in 
Δm/z, therefore, depends on the mass being measured, but is constant on mass to the 
half power (mass0.5).  It also means that the peak width gets progressively wider with 
increasing m/z by all resolution measures except ppm (Figure 4.2).   
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 (a) (b) 
Figure 4.2: Two isolated peaks from different m/z ranges of the same TOF 

spectrum of peptide fragments (a and b).  Peak widths increase with 
m/z, but the calculated resolution is constant by all measures but 
±Δm/z.  The inherent limiting mass precision, however, is constant at 
the bin spacing of 0.0001793 Da0.5. 

Orbitrap 

The bin spacing in Orbitrap analyzers is proportional to the inverse square root of 
the m/z ([m/z]-0.5).  This means that every successive unit distance in an Orbitrap 
spectrum represents a larger fraction of the mass range than every preceding unit 
distance.  The limiting precision in Δm/z, therefore, depends on the mass being 
measured, but is constant versus the reciprocal of that mass to the half power (mass-0.5).  
It also means that the peak width gets progressively wider with increasing mass, yet is 
roughly constant on the basis of number of detector bins (Figure 4.3). 
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 (a)  (b) 
Figure 4.3: Two isolated peaks from different m/z ranges of the same Orbitrap 

spectrum of peptides (a and b).  Peak widths increase with m/z, but are 
constant in terms of the number of detector bins or mass-0.5.  The 
calculated resolution varies by all measures.  The inherent limiting mass 
precision, however, is constant at the bin spacing of 6.71 x 10-8 Da-0.5. 

Fourier Transform-Ion Cyclotron Resonance (FT-ICR) 

The bin spacing in FT-ICR spectra is proportional to the inverse of the m/z   
([m/z]-1).  This means that every successive unit distance in an FT-ICR spectrum 
represents a larger fraction of the mass range than every preceding unit distance.  
Therefore, the limiting precision in Δm/z, depends on the mass being measured, but is 
constant versus the reciprocal of that mass (mass-1).  It also means that the peak width 
gets progressively wider with increasing m/z and that there is no conventional 
autoscaling approach to resolution that remains roughly constant across this type of 
mass spectrum (Figure 4.4). 
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 (a)  (b) 
Figure 4.4: Two isolated peaks from different m/z ranges of the same FT-ICR 

spectrum of crude oil (a and b).  Peak widths increase with m/z and 
decrease in number of points.  The calculated resolution varies by all 
measures.  The inherent limiting mass precision, however, is constant 
at a bin spacing of 6.71 x 10-8 Da-1 

Abscissa (y-axis) 
The relative signal strength of the ions measured by the detector within each 

Δm/z packet (detector bin) is the fundamental quantity represented along the abscissa of 
a mass spectrum.  It is important to understand that different types of ions “fly” or are 
transported with different overall efficiencies through the mass spectrometer, and thus 
may generate different signal strengths at the detector.  Second, the duty cycle of the 
analyzer (i.e., how much time it is devoted to detecting ions of a given mass) affects the 
signal strength registered.  Third, the electronic gain of the detector (or residence time in 
an ICR cell) affects both the noise accumulated in the spectrum and the number of 
counts generated for a given molecule. Fourth, interferences due to ion density for ions 
circulating in an ICR cell, or due to the dead time of an MCP detector following each 
detection-event collision, can thwart quantitative detection of molecular ions.  Finally, the 
ionization efficiency of the analyte itself plays a huge role in determining how the counts 
detected by the analyzer correlate to the actual concentration of the un-ionized parent 
molecule in the original sample. 

Unlike most analytical techniques, both chemical and instrument noise are 
always positive in a mass analyzer.  This severely limits the application of normal 
parametric statistical methods to mass spectra and makes peak detection, quantification, 
and discrimination very difficult.  Therefore, the relative abundance of mass spectral 
peaks, particularly relative to stable isotope analogs (spiked or endogenous) become 
more useful tools for mass spectral analysis than the actual abundance of any given 
species. 
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5.  SPECTRAL BASELINING 

The Instrument-Specific Nature of Mass Spectral Baselines 
Ion Trap and TOF Spectra 

In mass analyzers using MCP detectors, the collision of an ion with the detector 
generates a signal, but signals may be generated by the intended analyte and by other 
molecular ions of the same nominal m/z (e.g., ion fragments produced during the 
ionization process from other analytes, ions contaminating the sample from the matrix, 
multiply charged or isotopic ions of other species in the sample, etc.).  The detector itself 
also generates random noise, the amount of which depends on the operating 
parameters (e.g., gain and temperature) and age.  Because molecular ions are 
destroyed at the surface of the MCP detector, there is a residue accumulation over time.   

Noise (both chemical and instrumental) is always positive in a mass spectrum.  
This means: 1) that it is additive and raises the effective spectral baseline when multiple 
scans are combined (Figure 5.1), or 2) swarms of the same ions arriving at the detector 
simultaneously or interfering with each other in a trap or flight tube can cause the 
baseline around more abundant ions to rise relative to the rest of the spectrum (Figure 
5.2).  Therefore, the first step in any quantitative ion analysis is determining where the 
baseline should be established  (i.e., what is the true zero from which the peak 
abundance should be determined?). 

 
Figure 5.1. A MALDI-TOF peptide spectrum where matrix noise creates a 

progressive baseline offset (gap between x-axis and spectrum at 1200 
Da) and superimposed matrix noise peaks (inset) towards the low mass 
region, which is compounded by the summing of multiple scans to 
create the final mass spectrum shown.  
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Figure 5.2. A portion of a single ESI-TOF lipidomics 3s scan from an LC/MS series 

where ion over-abundance causes a localized three order of magnitude 
baseline rise around the higher abundance peaks in the spectrum. 

Orbitrap Spectra 

Orbitrap mass spectra are unique in that the enhanced Fourier Transform (eFT) 
technique used to construct the mass spectrum effectively reduces the ion harmonics to 
less than 1% of the parent peak abundance.4  Details of the eFT technique are beyond 
the scope of this paper.  The effect, however, is that the resulting Orbitrap mass spectra 
appear to have a constant zero baseline. 

FT-ICR Spectra 

Traditional FT-ICR mass spectra are similarly produced by Fourier Transform of 
the ICR time domain signal, like Orbitrap spectra.  The mathematics of this transform are 
beyond the scope of this paper, but the resulting spectra produced contain both noise 
and ion harmonics.  Two types of FT spectra can be produced.  In Magnitude spectra 
(Figure 5.3), the baseline floats above zero.  In Absorptive spectra, the median counts 
are effectively subtracted from the magnitude spectrum, shifting the spectrum downward 
to straddle the x-axis at zero counts, with the option to trim (set to zero) negative counts 
from the resulting spectrum. 

                                                
4  Lange, O. et al., "Enhanced FT for Orbitrap Mass Spectrometry”,  Int. J. Mass 

Spectrom. 369: 16-22 (2014). 
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Figure 5.3. A portion of a FT-ICR magnitude spectrum of a petroleum sample (log 

abundance mode), showing the Fourier transform noise around some 
sample peaks.  The median baseline of the Fourier Transform 
magnitude spectrum is offset from zero by ≈106 counts.  A 
corresponding absorptive spectrum would effectively relocate the 
median baseline to zero counts, generating negative noise peaks that 
may or may not be trimmed from the spectrum. 

Information Content in the Spectral Baseline 
The baseline offset from zero and the high frequency variation about that offset 

provide useful metadata about the spectrum.  There are various methods that can be 
used to estimate the baseline of a spectrum (described below).  The high frequency 
variation about this baseline, particularly in regions devoid of real analyte peaks, provide 
an estimate of the general instrument and chemical noise that should overlay all peaks 
in the spectrum, providing useful signal-to-noise metadata. 

The goal of spectral baselining is to eliminate low frequency noise (i.e., 
abundance variation over m/z scales larger than the width of the analyte peaks), while 
preserving the high frequency noise (i.e., abundance variations too narrow to be 
considered analyte peaks).  A secondary goal is to establish the baseline in a way that 
the amplitude of the high frequency noise can be estimated, so that the useful signal-to-
noise metadata can be applied for improved peak discrimination in downstream 
processing.5   

                                                
5  Spectral Signal-to-Noise Determination.docx 
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There are several options that people use in mass spectral data collection that 
should be avoided.  Any technique that destructively removes spectral information (e.g., 
thresholds, smoothing, or centroiding) should be avoided as it necessarily limits 
metadata collection useful for further analyses. 

Centroid Mode 

The data acquisition software of all mass spectrometers often provide various 
options that unfortunately can remove data useful for establishing the true baseline and 
signal-to-noise limits for peak detection.  For example, acquiring data in centroid mode 
eliminates all the natural spectral variation that can be found in regions that contain no 
peaks of interest, eliminating it from consideration by various baselining and signal-to-
noise estimating algorithms.  This may be convenient for the user because it makes the 
spectrum smaller, saving storage capacity and digital transfer times to move the data to 
other devices.  It also removes options or eliminates degrees of freedom for the user in 
the analysis of their data, by removing all the metadata about signal-to-noise and mass 
and abundance precision that are useful during downstream processing.  The typical 
assumption is that the instrument manufacturer can ascertain better than the user:  what 
is a peak and what is noise.  However, in a regulatory environment, how do you prove 
that is a correct assumption and why would you forever give up the ability to apply 
alternative or future peak detection processing options to your data? 

Smoothing 

Spectral smoothing is a common technique used to suppress high frequency 
noise.  Smoothing can be applied directly to the counts of the spectrum, or to the 
derivatives used for peak detection through the use of higher order finite difference 
calculus. There are a wide variety of smoothing techniques, a discussion of which is 
beyond the scope of this paper.  However, all smoothing effectively lowers the resolution 
of the spectrum by widening all peaks.  The amount of resolution loss depends on the 
method applied.  The additional challenge is how to smooth the spectrum when both 
peak shape and the frequency of the noise defined as x-axis points (or detector bins) 
vary with m/z (such as in TOF, Orbitrap and FT-ICR spectra)6.  Fundamentally, however, 
all smoothing is destructive to the high frequency noise. 

Thresholding  

Sometimes the data acquisition software allows the user to specify a threshold 
below which it does not record any spectral data, as a method to limit the data storage 
and any subsequent data transmission requirements.  Doing so also removes metadata 
useful for setting the true baseline and the inherent signal-to-noise in the spectrum, and 
permanently removes smaller real peaks below the imposed threshold that could 
otherwise be identified from the resulting spectrum. 

Data Compression 

Most instrument manufacturers automatically compress the spectral data, even in 
profile mode, by removing zero count points or using a variant of the Lempel-Ziv-Welch 
compression technique7.   Data compression by these techniques is non-destructive, 
because the removed points can be replaced exactly by spectral decompression once 
the intrinsic data point spacing and compression type are known.  However, these points 
must be replaced in the spectrum before any baselining method or signal-to-noise 
determination can be accurately applied. 

                                                
6  Spectral Characteristics.docx [more complete reference?] 
7  Lempel-Ziv-Welch File compression, https://en.wikipedia.org/wiki/Lempel–Ziv–

Welch (accessed 23 June 2016).  



 

© 2016 Veritomyx, Inc., All Rights Reserved  

Abundance-Based Peak Discrimination 
Fundamentally, mass spectra consist of abundance values at given mass 

positions.  However, there are additional metadata that can be brought to bear in 
baseline determination.8  This includes:  1) how the intrinsic peak shape varies with m/z, 
which can be used to distinguish high frequency noise and low frequency baseline 
variation from peaks; 2) how the point spacing varies with m/z, which can be used for 
pattern-based noise detection algorithms; and 3) that noise is always positive (one 
sided) in mass spectra (i.e., there is no such thing as a negative count).  This latter 
characteristic of mass spectra intrinsically eliminates the applicability of most parametric 
statistical approaches that might work well in other spectroscopy or signal analysis 
measurements where noise is randomly distributed about a true value. 

True and False Peaks 

As an example, we can centroid the TOF spectrum above (Figure 5.2) with no 
baseline or threshold constraints.  Since this scan is part of an LC/MS run, we can also 
centroid the immediately preceding and following scans of that same run.  If a peak is 
found to exist in the center scan and in at least one of the two adjacent scans within 50% 
abundance, that peak is considered a positive detection event.  If there is a peak that 
appears in both the adjacent scans within 50% abundance, but not in the center scan, 
that peak is considered a negative detection event.  Histograms of the distributions of 
both the positive and negative peaks found in the center scan by their abundance can 
then be determined (Figure 5.4).  

 
Figure 5.4. Histograms of peaks found in the spectral example of Figure 2 as 

distributed by their abundance.  Positive peaks are those detected in 
either the immediately prior or following scan of the LC/MS run within 
50% of the target peak abundance.  Negative peaks are those found in 

                                                
8 see section on Spectral Characteristics 
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both the surrounding scans, but not found in the center scan within 50% 
abundance of either surrounding scan. 

What immediately becomes apparent from these distributions is that there is very 
little abundance discrimination between true positive peaks and false peaks in this 
spectrum.  Some of this overlap is due to the baseline float around peaks of high 
abundance (Figure 5.2), which adds counts to any noise peaks found in that local 
vicinity.  Some of this overlap is due to low frequency non-linearities or “float” in the 
baseline (Figure 5.1, near 1200 Da), which also adds extra counts to peaks in these 
regions.  Much of the overlap, however, results from noise superimposed on the sides of 
larger peaks, which many centroiding methods detect as a peak with its abundance 
estimated from its apex to zero.  Similarly, noise inflation due to the summing of multiple 
scans can artificially raise the abundance values of all centroids drawn from zero counts. 

Proper baselining minimizes or eliminates the contributions of low frequency 
baseline variability to the error in centroid abundances of the peaks found.  More 
importantly, establishing a proper baseline allows the signal-to-noise limits to be 
accurately estimated. 

Baselining Algorithms 
A wide variety of algorithmic methods have been proposed and applied to the 

baselining challenge of mass spectra.  These methods can generally be clustered into a 
few distinct categories:  polynomial regressions of increasing orders (including the zero 
order fit of mean or median counts), window-based local baselining approaches (both 
static and dynamic), or asymmetric Whittaker smoothing and its derivatives. 

Iterative Polynomial Regressions 

One common approach is to find the least-squared polynomial regression of the 
mass domain to the abundance or log(abundance) domain.  The least squares 
polynomial order may be determined by standard statistical methods, either χ2 for the 
zero order fit (average or log[average]) or goodness of fit or incremental improvement 
ANOVAs for all higher order polynomials9.  The least squares polynomial fit, however, 
tends to increasingly overestimate the baseline as more peaks, or peaks of greater 
height, appear in the spectrum (Figure 5.5).

                                                
9  Zar, J. H., Biostatistical Analysis, pgs. 268-273 (Prentice Hall, 1974). 
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Variations on the least mean square polynomial regression have been proposed to solve 
this overestimation issue, such as weighting the data inversely to the highest abundance within 
a mass window (i.e., discounting m/z regions that contain the larger peaks).  However, this adds 
the user-adjustable parameter of an appropriate window size to the regression, which can be 
variable with m/z, depending on the mass analyzer.  It is also possible to ignore the amplitude of 
the peaks and noise entirely by applying a least median square regression.  However, least 
median squared regressions have multiple valid solutions, some of which are clearly suboptimal 
(Figure 5.6), with no statistical recourse to determine the global optimum. 

 
Figure 5.6. The Log10 Least Median Square Polynomial fits obtained using the MASS library 

of the R.app for the ESI-TOF spectrum of myoglobin.  Those polynomials higher 
than O[5] converged back to the O[1] solution with no net improvement in the 
quality of the baseline and failed to follow the observed baseline curvature.  
However, in each case, the baseline solution was indeed a Least Median 
Squares fit with equal numbers of points above and below the fit, illustrating that 
multiple possible valid solutions can be obtained for higher order polynomials by 
the method of Least Median Squares. 

We note here that the zero order polynomial solution is the same as a flat baseline 
(mean, weighted mean, or median) through the spectrum.  This very common mass spectral 
baselining method is therefore considered a part of the polynomial regressions approach.   

Another variation on the polynomial regression method is to remove all points above the 
regression line and perform the regression again, iterating fits and higher abundance point 
removal for a constant polynomial order until there are either too few points left to perform a 
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regression of that order, or a user-specified maximum number of iterations are reached.10  
However, standard parametric goodness of fit statistical methods fail to predict the optimal 
number of iterations.  It is readily shown that the final result for any polynomial order ends up 
being one data point more than the order of the polynomial (a degree of freedom limitation of 
regression analysis). In the case of a zero order polynomial, the resulting baseline is always the 
lowest abundance value in the spectrum by this method, unless the number of iterations is 
restricted a priori by the user. 

Rubber Band Baseline 

In Rubber Band baselining11 the spectrum is divided into even user-determined 
increments.  The local minimum is determined within each increment and is subsequently used 
as a support point for the baseline.  The baseline between these support points can be obtained 
by linear interpolation connecting the dots (i.e., a rubber band stretched over anchor points), a 
cubic spline, or a polynomial regression.  The challenge in this method is to define a window 
size (x-axis increment) that is large enough to negate the impact of high frequency noise, large 
enough to not allow the baseline to rise into the center of real peaks, but not so large that the 
baseline fails to track the low frequency undulations of the spectrum. 

Classic rubber band baselining is implemented with a constant Δm/z window size, which 
only works for ion trap spectra.  If the window is alternatively defined as a constant number of 
points (detector bins), then the method can be successfully adapted to Orbitrap spectra since 
the peak width is constant in that domain12.  However, neither of these baselining methods are 
suitable for the variable window widths of either TOF or FT-ICR spectra. 

The next problem is determining what measure of peak width to use for the window size:  
full peak width at half maximum height (PWHH), or peak width at the baseline (which becomes 
a "chicken-or-egg first" problem when being applied to baseline determination)? Perhaps the 
optimum window size lies at some multiple of the peak width? Day-to-day analyzer tuning 
variations can cause shifts in the intrinsic peak shape, as do any changes in the working mass 
range of the analyzer.  Finally, how does skewness or kurtosis in the intrinsic peak shape affect 
the optimum window size?  Since there is no statistical guidance for the optimum window size, it 
can only be set by user judgment and needs revision every time the mass analyzer settings are 
changed. 

Moving Average Methods 

While the rubber band method divides the spectrum into fixed increments, it is similarly 
possible to move the analysis window by increments through the spectrum, like a rolling ball13, 
to get a local minimum, median14, or abundance-weighted average for every detector bin (point) 
in the spectrum.  As with the rubber band method, there is no statistical guidance for how to set 
the appropriate window size.  Logically, it must be larger than the baseline width of any single 
peak or the resulting baseline will rise inside every peak.  This means that the method can 
potentially be applied to ion trap and Orbitrap spectra, but would need m/z-adaptive peak width 
                                                
10  Lieber, C. A., Mahadevan-Jansen, A., “Automated Method for Subtraction of Fluorescence 

from Biological Raman Spectra”, Applied Spectroscopy, 57:1363-1367 (2003). 
11  Beleites, C., “Fitting baselines for spectra”, https://cran.r-

project.org/web/packages/hyperSpec/vignettes/baseline.pdf, (Mar 4, 2014). 
12  Spectral Characteristics.docx 
13  Kneen, M. A., Annegarn, H. J., “Algorithm for fitting XRF, SEM and PIXE X-ray spectra 

backgrounds”, Nuclear Instruments and Methods in Physics Research Section B, 109-
110:209-213. (Apr, 1996). 

14  Friedrichs, M.S., “A model-free algorithm for the removal of baseline artifacts”, J Biomol. 
NMR, 5:147-153 (1995). 
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information to be applied to TOF or FT-ICR spectra, where the peak widths are not constant on 
a Δm/z or bin number spacing.   

The first question is:  should be window be centered around the spectral peak, or 
skewed to the left or right from the apex, depending on the shape of the mass spectral peak?  
The second question is:  should the baseline produced consist of the series of local minima, be 
inversely weighted by the maximum apex height in the window, or consist of the percentile 
cutoffs (e.g., median) of the abundance values in these moving windows?  Finally, how are the 
moving average points to be connected to form a coherent baseline (e.g., regression or what 
order, cubic spline, etc.)?  Each of these user-adjustable parameters opens up a plethora of 
possibilities that cannot be inferred statistically from the spectral data and, therefore, require 
user judgment to set. 

Penalized Least Squares Smoothing 

Perhaps the most common method for time series noise reduction is the Whittaker 
smoother.15  Designed for evenly spaced data, the Whittaker smoother attempts to both fit a set 
of data (y) with a cubic spline model (µ[x]) by minimizing the least squares residual error that 
represents the raw data, but penalizes that model, if subsequent points of the model vary too 
much (i.e., the finite difference rate of change in the model shape with x is large).  An arbitrary 
Lagrangian multiplier (λ) defines the relative contribution of the cubic spline and finite difference 
slope to the final model objective function (SSE): 

  
The Whittaker objective function (SSE) for minimization consists of two parts.  The first 

part is the standard sum of squares residual error from the regression model  
(yi - µi)2, which results in re-creation of the spectrum as a cubic spline when λ—>0.  The second 
part of the objective function consists of a local approximation (by difference equations) of the 
second derivative of the regression model [(δ2µi)2 = (µi-1-2µi+µi+1)/(Δx)2].  Where the direction of 
previous and subsequent points is unchanged (along the trajectory of a line) the second 
derivative (i.e., change in slope) goes to zero..  Where the trajectory of the line changes, the 
square of the second derivative is always positive, irrespective of the direction of that change.  
The magnitude of the magnitude of the change in the second derivative increases the more that 
a series of model points deviates from linear.  In the classic Whittaker smoother, the weighting 
function wi is set to 0.5 for both positive and negative values of the residual error (yi - µi).   

Asymmetric Whittaker Smoothing 

The Whittaker algorithm is, in essence, a data smoother that reduces the magnitude of 
high frequency noise in the data.  To the Whittaker smoother, peaks in a mass spectrum are 
effectively just additional high frequency noise.  However, the objective function can be made 
asymmetric to create a smoothed baseline, by providing different weights to the residuals that 
are greater than the Whittaker smoothed model than those that are less than the model points 
(i.e., where wi = p where the residual is positive and wi = 1-p where the residual is negative).16  
At p=0.5 all residuals contribute equally to the residual error at any value of λ.  As p—>0, the 
Whittaker smoother moves progressively closer to the local minimum of the spectral 
abundances and starts to approximate a baseline (Figure 5.7). 

                                                
15  Whittaker model, https://en.wikipedia.org/wiki/Whittaker_model (accessed June 29, 2016). 
16  Eilers, P. H. C. and Boelens, H. F. M., “Technical Report: Baseline Correction with 

Asymmetric Least Squares Smoothing”, Leiden University Med. Center Report, 
http://zanran_storage.s3.amazonaws.com/www.science.uva.nl/ContentPages/443199618.p
df (Oct 21, 2005). 
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Figure 5.7. A portion of the ESI-TOF spectrum (Figure 5.2) showing the results of different 

parameters used in the asymmetric Whittaker smoothing function.  Where λ—>0 
the Whittaker smoother becomes a cubic spline approximation of the raw 
spectrum.  At higher values of λ, the smoother approximates a local average of 
the spectral abundance data where positive and negative residuals are weighted 
equally (i.e,. p=0.5).  As p is lowered, preferentially weighting against the higher 
abundance points, the smoothed spectrum starts to approach a spectral 
baseline. 

The asymmetric Whittaker smoother replaces the unknown of optimum window size in 
the rubber band and moving average baseline methods with two more obscure parameters, the 
Lagrange multiplier (λ) and a residual weighting function (wi).  Unfortunately, neither adjustable 
parameter can be inferred directly or indirectly from the spectral data by statistical means.  
However, they appear to be less subject to tuning variations and mass range changes in the 
mass analyzer, versus the window size changes required in the previously-described methods.  
The asymmetric Whittaker smoother also appears to be a universally-applicable method to all 
mass analyzer types, since the result seems to be independent of peak shape or variation of 
peak shape with m/z. 

It should be noted, however, that as λ—>1, the asymmetric Whittaker smoother model 
becomes the local weighted average abundance value of the spectrum, invariant with m/z.  We 
have already shown (Figure 5.7) that as λ—>0 the raw spectrum is faithfully reproduced as a 
cubic spline).  As a consequence λ <1.  Furthermore, as p—>0, where p determines the residual 
weighting function (wi), the asymmetric Whittaker smoother will approach the minimum iterative 
polynomial approximation of a constant order zero baseline at the lowest abundance value in 
the spectrum.  As a consequence, 0 < p ≤ 0.5.  While λ and p are therefore bounded, there is no 
further guidance on how to optimally set either user-adjustable parameter for any given 
spectrum via statistical means, and it is left to the user to follow their best judgment. 
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Combinatorial Methods 

Various combinations of the above baselining approaches have also been proposed, 
such as the Filling Peaks method.17  In this method, - Whittaker smoothing is applied to the 
spectrum using an arbitrary value for λ.  The Whittaker smoothed spectrum is then subjected to 
rubber band minima determination with an arbitrary window size of n points.  The rolling ball 
mean of the rubber band minima is then iteratively applied using an m times n window size 
(where m is an arbitrary multiple of n,   m*n < total points in the spectrum, and m > 1).  In each 
iteration, those rubber band minima that are above the rolling ball mean are removed from the 
local mean calculation.  The process continues for an arbitrary number of iterations.  This 
technique contains 4 user-adjustable parameters (λ, n, m > 1, and number of iterations), none 
of which can be statistically-inferred from the spectral data. 

PeakInvestigator™ Baselining 

Thus, the problem remains unresolved:  how to robustly baseline spectra in a way that 
non-destructively reads through the high frequency noise, adapts dynamically to the low 
frequency baseline variations, yet requires no user-adjustable parameters.  Veritomyx, Inc. has 
developed a proprietary baselining method that accomplishes just that.  The resulting 
PeakInvestigator™ baseline effectively provides a robust approximation to the local median 
counts, yet this is accomplished in a manner that avoids getting trapped in alternative local-
minima solutions (as in Figure 5.6).  While computationally complex, it is statistically-valid, 
universally-applicable, and accepts no user-adjustable parameters.  Figure 5.8 shows the PI 
baseline automatically produced for the troublesome TOF spectrum of Figure 5.6.   

The PI baseline produces a result comparable to that which might be obtained from a 
least median polynomial regression of optimum order and which is constrained to the global 
optimum result, or that might be produced with a moving median method with continuous local 
re-optimization of window size.  However, it avoids any need for the user to set the proper 
polynomial order or to estimate the best window size as a function of m/z, as would be required 
by either of these methods (see above discussions).   

 PI baselining performs equally well with FT-ICR  (Figure 5.9) and ion trap spectra 
(Figure 5.10).  In the case of the FT-ICR spectrum, PI baselining was applied to both the 
magnitude and absorption mode versions of the same spectrum.  When the resulting absorption 
mode baseline is scaled back to fit the magnitude spectrum, it overlaps the baseline obtained 
from the magnitude spectrum, suggesting that the PI baselining method is very robust to 
spectral amplitudes.  Because Orbitrap spectra have an effective baseline of zero counts, they 
do not require additional baselining. 

                                                
17  Liland, K. H., “4S Peak Filling - baseline estimation by iterative mean suppression”, 

Methods, 2:135-140 (2015). 
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Figure 5.8. The PeakInvestigator™ baseline determined for the ESI-TOF spectrum of 

myoglobin shown in Figure 5.6.  There are no user-adjustable parameters for the 
PeakInvestigator baseline.  This baseline provides a local approximation to the 
median counts, yet avoids alternative valid solutions to the least median square 
regressions approach in Figure 5.6.  
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Figure 5.9. The PeakInvestigator™ baselines determined for FT-ICR spectra of petroleum 

samples.  The figure compares the PI baseline obtained from the magnitude 
mode spectrum to that of the corresponding absorption mode spectrum (after 
scaling back to magnitude mode).  The close overlap of these two baselines 
suggests that the method is very robust to changes in spectral amplitude over at 
least 5 orders of magnitude in abundance. 
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Figure 5.10. The PeakInvestigator™ baseline determined for an ion trap spectrum of lipids. 

Baselining Limitations 
All baselining methods, even baselining by eye, are built on the implicit assumption that 

the majority of spectral information is noise.  If the spectral footprint of the real analyte peaks 
becomes the majority of the data over any large region of the mass spectrum, then the chemical 
and instrument noise in that region becomes drowned in a confusing jumble of overlapping 
analyte peaks.  If the heavily-overlapped regions are small (i.e., the width of a few peaks), any 
robust baselining algorithm may traverse the region with only minor error.  However, when such 
regions of ultra-high peak density start to cover 20, 50, 100, or wider Da spans of the spectrum, 
any baselining algorithm will increasingly start to confuse real analyte peaks with chemical or 
instrument noise. 

This problem is more common in lower resolution mass analyzers (e.g., ion trap and 
unit-resolution TOF and quadrupole analyzers), where the peak width at baseline approaches 1 
Da.  The compositions of most ions below 1,000 Da generally produce peaks closely spaced 
(±0.1 Da) in a mass spectrum for singly-charged molecular ions because the maximum mass 
defect for any element is about 0.1 Da.18  Therefore, singly-charged molecular ions should 
never produce a baselining problem at any spectral resolution above 3,000 (defined as mass 
divided by peak width at half height).  Higher resolution mass analyzers are even more immune 
to this baselining limitation. 
                                                
18  Hall, M. P. et al., "'Mass defect' tags for biomolecular mass spectrometry," J Mass Spect., 

38:809-816 (2003). 
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The problem of peak overlaps dominating the baselining algorithm primarily appears in 
the spectra of multiply-charged species at any resolution.  Doubling the charge state halves the 
nominal 1 Da spacing between peaks.  Triply-charged species reduces the interpeak spacing to 
0.3 Da.  Again, the higher the resolution, the less of a problem this poses to the baselining 
algorithm, but densely packed spectra containing mixtures of charge states can ruin the 
performance of any baselining method.  This issue is generally remediated by better pre-
separation of the analytes prior to mass spectral analysis. 

6.  SPECTRAL SIGNAL-TO-NOISE DETERMINATION 
All mass spectra are confounded by chemical and instrument noise.  The ability to 

discriminate true peak signals from this noise is a critical challenge in peak detection.  The 
crossover between spectral data and noise, therefore, is an important piece of metadata to be 
determined within a spectrum.  A statistically robust signal to noise threshold can be used to 
determine when a side peak is real or should be attributed to noise.  It also aids in the 
establishment of thresholds for peak detection. 

Chemical and instrument noise is not constant at every mass point in a spectrum.  For 
example the matrix noise produced in MALDI ionization often underlies all analyte peaks in the 
low mass range of MALDI spectra (Figure 6.1).  Even there, however, its contribution to the 
counts at any given mass varies (Figure 6.1, inset).  In an FTICR spectrum, high frequency 
detector noise is readily visible as a jagged baseline surrounding all the analyte peaks (Figure 
6.2).  This variation in chemical noise about an average (or median) value is the key to 
establishing the spectral noise level. 
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Figure 6.1. The matrix noise offset produced in a MALDI peptide spectrum.  MALDI matrix 
noise becomes increasingly abundant at lower m/z, causing a baseline offset of 
the spectrum.  The inset shows that the matrix contribution to the counts in any 
given mass point varies locally with mass, forming a repeating pattern.   

 
Figure 6.2. The high frequency detector noise in an FT-ICR spectrum of a petroleum 

sample. 

Average Noise and Noise Variance 
Mass spectral noise has two separable components:  1) the average noise, which lifts 

the baseline from zero counts because noise is always positive in a mass spectrum; and  2) the 
noise variance about this average. In a spectrum where the combined width of the analyte 
peaks represent just a small fraction of the mass range of the spectrum, the local median 
baseline effectively approximates the average chemical and instrument noise in the spectrum.   

Assuming the analyte peaks cover a limited fraction of the total mass range, then the 
median baseline can be assumed to represent the average noise level in the spectrum.  Since 
peaks generally extend above the median baseline, then any variance below the baseline 
typically represents mass points that accumulated less than the average noise.  Those counts 
above the local median baseline include those mass points that accumulated more than the 
average noise counts, but also include the counts produced by the analyte species.  Therefore, 
the difference between the actual counts below the baseline and the median baseline can be 
treated as effectively representing half of the actual noise variance. 

Consequently, by subtracting the local median baseline from the spectrum, the spectrum 
is re-registered to zero baseline counts, eliminating the average noise offset.  Those residuals 
that extend below zero counts represent the lower half of the noise variance and can be 
reflected to positive counts to provide an estimate of the level of chemical and instrument noise 
remaining in the baseline-subtracted spectrum. 
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For example, in the MALDI spectrum (Figure 6.1) the matrix offset in the low mass 
region can be effectively re-registered to zero counts by subtracting the local median baseline 
(Figure 6.3), as approximated by PeakInvestigator™.  Half of the total variance in this matrix 
noise is then represented by the magnitude of the counts that extend below zero abundance.  
The other half, and the analyte peaks of interest, lie above the local median.  If the pure noise 
variance below the median is reflected above the median (Figure 6.3), then we effectively 
estimate the overall chemical and instrument noise in this spectrum.  This estimate is imperfect 
because the chemical noise in this MALDI spectrum is not randomly distributed but is in fact 
patterned (inset, Figures 6.1 and 6.3), but the trend in its abundance with m/z is clearly correct. 

  
Figure 6.3. PeakInvestigator™ baseline subtraction of the MALDI-TOF spectrum re-registers 

the average noise counts to zero, eliminating the matrix offset created in the low 
mass range of the original spectrum (Figure 6.1).  The peaks in the baseline-
subtracted spectrum that extend below zero abundance effectively represent 
about half of the total variation in chemical and instrument noise in the spectrum.  
When these negative peaks are reflected above the median, an estimate of the 
noise is produced.  In this case this is an under-estimate probably caused by the 
interlaced pattern evident in the MALDI matrix noise (inset).  This matrix peak 
pattern is clearly narrower at the apex and wider at the base, lowering the 
estimate of a median baseline and biasing the s/n variance to the low side. 

The spectral noise in the FT-ICR spectrum (Figure 6.2) appears to be more randomly 
distributed. After subtraction of the PeakInvestigator™ baseline and reflection of the residuals 
now below baseline, the local signal to noise is much better approximated (Figure 6.4) than that 
of the MALDI spectrum (Figure 6.3). 
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Figure 6.4. PeakInvestigator™ baseline subtraction of the FT-ICR spectrum (Figure 2) to re-

register the spectrum to zero counts.  The negative residuals are then inverted to 
estimate the upper limits of the chemical and instrument noise in this spectrum. 

Statistical Signal-to-Noise Estimation 
Where the noise variance is even throughout the spectrum, the statistical distribution of 

this variance can be determined by combining the negative and reflected noise distributions 
obtained from the baseline-subtracted spectrum.  This is illustrated in the following examples. 

ESI-TOF Example 

In this example, an ESI-TOF spectrum from an LC/MS lipidomics series is the target 
scan (Figure 6.5).  After baseline subtraction and noise reflection, the signal-to-noise variance is 
produced.  Here, without the interfering matrix peak pattern common to MALDI spectra (Figure 
6.1), the signal-to-noise levels approximated by this method appear close to that observed by 
eye (Figure 6.6).  The variance is also relatively even throughout the spectrum. 
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Figure 6.5. A single ESI-TOF spectrum taken at random from an LC/MS series obtained 

from a plasma lipidomics experiment.  The inset shows the average noise offset 
and local noise variation around a series of analyte peaks.   
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Figure 6.6. The spectrum of Figure 5 after PeakInvestigator™ baseline subtraction showing 

the reflection of the sub-baseline noise variance.  It is observed that the noise 
variance thus estimated is roughly constant across the spectrum.  The inset 
shows that the reflected noise variance agrees well with the actual spectral noise 
variance. 

Since the noise variance is roughly uniform across the spectrum, a statistically-valid 
estimate of this variance can be obtained from its abundance distribution.  Plotting the combined 
(positive and negative) noise variance abundances on a probability plot (Figure 6.7) shows that 
it is approximately normally distributed.  Therefore, these variance data can be fit to a normal 
distribution, which allows the limits of chemical and instrument noise throughout the spectrum to 
be estimated with any statistical confidence desired. 
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Figure 6.7. A probability plot of the ESI-TOF noise variance abundances obtained from the 

data of Figure 6.  A normal distribution curve fit is shown that can be used to 
estimate the upper limit of the spectral signal-to-noise with any statistical 
confidence desired. 

FT-ICR Example 

Similar results are obtained for the FT-ICR spectrum shown above (Figure 6.2).  In this 
FT-ICR spectrum the noise variance is seen to be approximately normally distributed (Figure 
6.8) even though a slight bulge in the variance can be seen between 100 and 350 Da in the 
original spectrum (Figure 6.2).  
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Figure 6.8. A probability plot of the FT-ICR noise variance abundances obtained from the 

data of Figure 6.2.   
Ion Trap Example 

In this example (Figure 6.9) we look at a tandem MS CID fragmentation spectrum of a 
peptide taken from a yeast peptidome LC/MS/MS study.  The PeakInvestigator™ baseline is 
shown near 1 count.  The resulting signal-to-noise distribution (Figure 6.10) is again seen to be 
nearly normally distributed by the method described above. 
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Figure 6.9. This is an example of a peptide fragmentation spectrum (MS2 scan) obtained 

from an ion trap analyzer.  Tandem MS spectra typically have very low chemical 
and instrument noise, as is reflected in the PeakInvestigator™ baseline result 
near 1 count. 
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Figure 6.10. The signal-to-noise distribution variances are graphed for the below baseline 

variances and their above baseline reflection from the ion trap spectrum of 
Figure 6.9.  A normal distribution curve fit is shown that can be used to estimate 
the upper limit of the spectral signal-to-noise with any statistical confidence 
desired. 

Orbitrap 

Orbitrap data outputs from the mass analyzer consistently provide an effective uniform 
baseline of zero counts.19  Therefore, the above method for signal-to-noise estimation is not 
applicable to Orbitrap spectra. 

7.  SPECTRAL SMOOTHING 
Spectral noise, particularly that higher in frequency (shorter in wavelength) than the peak 

width, causes problems with finite difference centroiding.20  While baselining attempts to correct 
for large wavelength noise,21 short wavelength noise is often addressed by smoothing.  Given 
the magnitude of the noise relative to the peak height, noise can also cause false peaks to be 
detected by all centroiding methods, particularly when a peak model is not a perfect fit to the 
true peak shape.  While the literature is replete with specific examples of various approaches to 

                                                
19  see section on Spectral Baselining. 
20 see section on Spectral Centroiding. 
21  see section on Spectral Baselining. 
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the filtering or smoothing of mass spectrometric data, as Kearnsley et al.22 have suggested, the 
blind application of any of these methods to mass spectrometric data can result in significant 
data loss. 

Savitzky−Golay Smoothing 
Savitzky−Golay filters23, 24 are probably the most popular mass spectral digital smoothing 

method.  In this method, successive sub-sets of adjacent data points (yj±h) are fitted with low 
degree polynomials and convolved to create a single optimal set of abundances (  ), by least 
squares minimization of the Savitzky-Golay coefficients (Ch, Equation 7.1).  The resulting 
smoothed spectrum (  ) essentially becomes a weighted average of all neighboring 
abundance values in the original spectrum (yj±h). 

  (7.1) 
 

Examples of Savitzky-Golay filtering applied to a TOF data file is shown in Figure 7.1.  In 
general, the lower the order the more smoothing is accomplished.  A characteristic of the 
Savitzky-Golay filter is that the window width (i.e. the number of points) used in the polynomial 
fit should be just larger than the order of the polynomial for best results.  Abrupt changes in 
spectrum abundance (before and after peaks) tend to cause discontinuities in the Savitzky-
Golay smoothed spectrum, as is evident from the deviations below the spectrum for the 
smoothed spectra in Figure 7.1.  These deviations are amplified on the log(abundance) scale 
used in the figure.  The effect of these deviations on the resulting centroids is generally 
mitigated by thresholding of the resulting false negative peaks these deviations generate during 
the centroiding process. 

However, as with all smoothing methods the raw signal is distorted in the convolution 
process.  The peak height is reduced and the half-width of the peak is increased (Figure 7.1).  
Thus applying this smoothing method can force nearly-isobaric partially overlapped peaks to be 
irresolvably merged. 

                                                
22 Kearnsley, A. J., Wallace, W. E., Bernal, J., and Guttman, C. M., “A numerical method for 

mass spectral data analysis,” Appl. Math. Lett., 18:1412-1417 (2005). 
23 Savitzky, A.; Golay, M. J. E., "Smoothing and Differentiation of Data by Simplified Least 

Squares Procedures," Analytical Chemistry, 36 (8): 1627–39 (1964). 
24 Steinier, J., Termonia, Y.. and Deltour, J., "Smoothing and differentiation of data by simplified 

least square procedure," Analytical Chemistry, 44 (11): 1906–9 (1972). 
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Figure 7.1. Savitzky-Golay smoothing of different polynomial orders and with different 

numbers of neighboring points applied to a TOF lipidomics spectrum.  The 
discontinuities of the smoothed spectrum are characteristically seen immediately 
before and after a peak and deviate strongly below the spectrum.  These can 
give rise to false positive detections, but the resulting peaks are generally below 
the threshold limits for reporting. 

Whittaker Smoothing 
Whittaker realized that smoothing is a balance between absolute fidelity of a model to 

the data versus simply minimizing deviations in the model curve fit to that data (Equation 7.2).25  
Designed for evenly spaced data, the Whittaker smoother attempts to fit a set of abundance 
data (y) with a cubic spline model (µ) by minimizing the least squares residual error versus the 
raw data, but penalizes the model when subsequent points within the model vary too much.  
With λ=0, it gives the cubic spline solution that maximizes fidelity to the raw data.  As λ 
increases the model is smoothed out, until it eventually smooths over all the peaks as 
λ approaches 1. 

 

                                                
25 Whittaker, “On a new method of graduation.” Proceedings of the Edinburgh Mathematical 

Society, 41, 63-73, (1923). 
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  (7.2) 

The Whittaker objective function for the sum of squares error (SSE) for minimization 
consists of two parts.  The first part is the standard SSE from the regression model (yi - µi)2, 
which when λ—> 0 would result in the re-creation of the spectrum as a cubic spline.  The 
second part of the objective function consists of a local approximation (by finite difference 
methods) of the second derivative of the regression model [(δ2µi)2 = (µi-1-2µi+µi+1)/(Δx)2].  Where 
the direction of points in a series is unchanged (along the trajectory of a line), the second 
derivative goes to zero.  However, the square of the second derivative is always positive at 
inflection points, and the magnitude of the inflection increases the more that a series of model 
points deviates from linear.  The user-adjustable parameter (λ) is used to weight the two terms 
of the Whittaker objective function to control the local responsiveness of the regression to 
inflections in the data (yi).  The proper value for λ can only be determined empirically (Figure 
7.2). 

 
Figure 7.2. Whittaker smoothing applied to the Spectrum of Figure 7.1 with different values 

for λ, which varies between a minimum of 0 and a maximum of 1.  Note the 
increased width and depth of the discontinuities at both the start and end of each 
peak in the smoothed spectrum, as a function of increasing λ.  Values of λ>0.75 
generate negative peaks in the region of interest. 
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Fourier Filtering 
Fourier filtering is often employed to smooth data when the superimposed noise is of a 

different frequency than that of the signal itself.  In these situations, it can be an effective means 
to sharpen the peaks for better discrimination by removing confounding noise that is 
mismatched versus the frequency of the true peaks.  However, the technique can be difficult to 
apply generically to mass spectra for a variety of reasons.   

First, the peak shape must be uniform, and must be uniformly sampled across the mass 
domain of the spectra, otherwise no single set of sine wave harmonics will adequately describe 
every peak.  This is generally straightforward for ion trap spectra, but requires m/zx 
transformation of TOF, Orbitrap, and FTICR spectra into alternative evenly-spaced mass 
domains, in order to produce uniform peak shapes and a constant waveform sampling rate in 
these spectra, to support Fourier filtering.   

Second, the peaks of interest in the spectrum are often not evenly spaced (periodic), 
particularly in multi-charged spectra where the spacing between members of each isotopic 
series depends on the  reciprocal of the net charge (z-1).  This is further complicated by the 
necessary conversions of the mass domain to facilitate uniform peak shapes in TOF, Orbitrap, 
and FTICR spectra.   

Fourier transformation starts with the assumption that any spectrum can be modeled as 
an infinite series of sine waves of different frequencies.  The resolution power of this 
mathematical transform, however, depends on the number of reinforcing repeats of that peak 
shape pattern contained across the mass spectrum.  This is illustrated in the Fourier filtering of 
a MALDI-TOF spectrum of Na+ PEG adducts Figure 7.3.  Figure 7.3a shows the Fourier 
Transform of this spectrum with the various peak harmonics clearly identified.  By removing all 
the high frequency noise (≥ 10 Da-1 corresponding to frequencies less than 0.1 Da0.5) the 
reverse transform can be produced (Figure 7.3b).  However, in this case, the resolution of the 
filtered Fourier reverse transform is lower than that of the original spectrum. 

The full MALDI-TOF spectrum extended for nearly 5,000 Da with a PEG Na+-adduct 
isotopic pattern every 44 Da for a total of 113 repeating signals, yet there is still a net resolution 
loss by filtering.  This points to the second issue with Fourier filtering, that there must be enough 
peak repetition on a specific frequency to be able to extract a signal, otherwise resolution is lost 
with the transform.  In the successful literature example of Fourier filtering26 the high frequency 
MALDI-matrix noise is suppressed (filtered) from a MALDI-TOF spectrum.  That matrix noise 
generates a characteristic peak pattern within every mass unit of the spectrum, dwindling in 
abundance slowly over several hundred Da and having a characteristic mass spacing that was 
off-frequency (i.e., with a different mass defect) from that of the few analyte peaks.   

                                                
26 Kast, J. et al., “Noise filtering techniques for electrospray quadrupole time of flight mass 

spectra,” J. Am. Soc. Mass Spectrom., 14:766-776 (2003). 
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Wavelet Denoising 
Wavelet theory solves the insufficient repetition (sampling sufficiency) issue of 

Fourier filtering by assuming something about the underlying waveform (i.e., by choosing 
a mother wavelet).  The basic assumption in wavelet denoising is that the peak shape 
can be fully represented by a few harmonics of the mother wavelet.  Ergo, no infinite 
series is required (as in Fourier transforms) and very few data points in localized regions 
of the mass spectra are needed to calculate the adjustable parameters of a relatively few 
harmonic terms of the mother wavelet.   The art of wavelet denoising arises in guessing 
a mother wavelet that fully represents the peak shape, and in finding the right series of 
harmonics to represent the signal of interest. 

Wavelet methods in mass spectrometric analysis were originally applied to ion 
cyclotron resonance (ICR) analyzers as an alternative to Fourier transforms.27  However, 
wavelet denoising has more recently been applied to the analysis of TOF spectra. 28, 29, 30  
As with Fourier filtering, the peak shape must be constant across the mass domain.  
Therefore, wavelets could be applied directly to ion trap spectra, but only to m/zx 
transformed versions of TOF, Orbitrap or FTICR spectra. 

In Figure 7.4 we illustrate the practical aspects of wavelet denoising with a simple 
spline wavelet denoising algorithm31 applied to a Jeffamine polymer (an amino-
terminated PEO/PPO copolymer) isotopic series from a MALDI-TOF spectrum.  The first 
step in wavelet analysis, after choosing the form of the mother wavelet is to establish the 
appropriate order of the wavelet transform, specifically a high enough order that 
adequately reproduces the parent signal.  Figure 7.4a shows that an order 5 spline 
wavelet is the minimum necessary to reproduce the parent spectrum.  The second step 
(denoising) involves compression of the wavelet transform coefficient matrix by 
eliminating (i.e., setting to zero) the lesser coefficients of the transform matrix.  Any 
harmonics of the mother wavelet with zero coefficients no longer contribute any signal to 
the inverse wavelet transform.  The final step is the inverse wavelet transform.  We 
illustrate these last two steps by mapping the inverse transforms for different noise 
cutoffs over the original data (Figure 7.4b).  

                                                
27 Shew, S. I., “Method and apparatus for determining relative ion abundances in mass 

spectrometry utilizing wavelet transforms,” US5436447 (July 25, 1995). 
28 Morris, J. S., et al., “Feature extraction and quantification for mass spectrometry in 

biomedical applications using the mean spectrum,” Bioinformatics, 21:1764-1775 
(2005). 

29 Lange, E. et al., “High-accuracy peak picking of proteomics data using wavelet 
techniques,” Pacific Symposium on Biocomputing, 11:243-254 (2006). 

30 Nafati, M. et al., “Multi-scale data reduction algorithm of proteomic mass spectrum,” 
Internet J. Acad. Physician Assistants, 5(1) (2006). 

31 Mathematica Wavelet Package.  Wolfram Research. 
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While this technique shows promise for removing the high frequency noise, the 
user must define a suitable mother wavelet and determine which components of the 
transform matrix to eliminate, with nothing to guide them but trial and error.  
Unfortunately, the spline mother wavelet used in this example failed in other examples 
containing multiply charged higher molecular weight polymers and proteins in an ESI 
spectrum on the same mass analyzer.  There are also rigorous constraints on functions 
that can be used as mother wavelets (i.e., they must be infinitely differentiable). 
Furthermore, every time the mass range of the analyzer or any of its tuning parameters 
are changed, these user-adjustable parameters must be re-optimized. 

The Downside of Smoothing  
All of these smoothing techniques are designed to remove the noise that exists at 

higher frequencies (lower wavelengths) than that of the analyte peak widths.   However, 
all of these methods are data destructive, eliminating metadata about the spectrum that 
can be useful for downstream spectral analysis or peak quality measurements. Finally, 
any medium wavelength (lower frequency noise) not eliminated by baselining or below 
the detection threshold will still be present in the spectrum, confounding the centroiding 
results (Figure 7.5). 

 
Figure 7.5. Residual medium frequency noise (due to detector saturation) in the 

Whittaker-smoothed TOF spectrum (Figure 7.2).  Baseline subtraction 
reduces the lowest frequency noise.  The baseline-subtracted spectrum 
was smoothed with the Whittaker smoother (λ=0.25) to suppress the 
high frequency noise.  However, the medium frequency noise (that 
between the frequency of real peaks and the low frequency noise of 
baseline shifts or “float” due to ion saturation of the MCP detector) is still 
evident in the regions indicated. 
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8.  THRESHOLDING 
Thresholding is a procedure to discriminate spectral information that contains 

sufficiently strong and differentiated signal levels to be accepted as containing reliable 
peak information, versus the remaining spectral information that cannot be adequately 
differentiated from noise.  The threshold is always based on abundance, but the 
threshold does not have to be constant with m/z and may vary locally (if the software 
supports that). The difference between a threshold and a baseline is that a baseline 
attempts to estimate the average level of noise superimposed on the spectrum, whereas 
a threshold attempts to estimate the interface between the noise and the smallest 
reliably detectable peak. 

Some of the same methods used for spectral baselining can also be applied to 
the problem of thresholding with slight changes in parameters32.  For example, the 
Asymmetric Whitaker smoother can be weighted to the data above the cubic spline 
rather than below.  Yet all the same problems of estimating proper user-adjustable 
parameters remain, but in the thresholding application are made more complex because 
there is no upper bound to limit the result (i.e. the peaks rise in the same direction as the 
noise variance, whereas with baselining the noise variance is determined in the opposite 
direction of the peaks).  For example, a least squares regression may bisect the spectral 
noise or rise above the smaller isotopic peaks depending on the relative peak 
abundance compared to background noise, and iterative polynomial fits with subtraction 
of the points below the regression will ultimately move the threshold to the apexes of the 
highest n peaks, where n is one more than the order of the polynomial regression. 

Using the Signal-to-Noise Estimate for Thresholding 
A Synthetic Example 

It is possible, however, to use the estimated maximum signal-to-noise level 
(determined by subtraction of the median baseline and reflection of the negative 
residuals)33 as a threshold for peak detection.  We illustrate this by the following 
example.  In this example a synthetic TOF spectrum was constructed containing the full 
isotopic patterns of known composition peaks with monoisotopic peaks of 500 counts 
(Figure 8.1).  Noise was superimposed over this spectrum at an average of 15 counts 
(varying randomly between 0 and 30 counts).   

                                                
32 Spectral Baselining.docx 
33 Spectral Signal-to-Noise Determination.docx 
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Figure 8.1. A synthetic TOF spectrum produced from 31 known chemical species 

and their predicted isotopic abundances.  The monoisotopic peak of 
each species was set to 500 counts.  A 15 count average noise was 
superimposed over the spectrum, varying between 0 to 30 counts 
randomly by mass bin.  The 15 Count median baseline is also shown. 

Following the procedure outlined previously for estimating the spectral signal-to-
noise variance,34 the median baseline was subtracted and the noise variance below zero 
counts was reflected into the positive count domain.  The distribution of noise variance 
was then modeled as a normal distribution with 1 sigma = 8.4045 Counts. 

The baseline-subtracted spectrum was then centroided using mMass v5.3.035 
with constant absolute abundance thresholds proportional to different multiples of the 
modeled noise variance (n times sigma). Since all peaks present in this spectrum are 
known with certainty, it is possible to determine the Positive Predictive Value (PPV, 
Equation 8.1), the False Negative Rate (FNR, Equation 8.2), and the Fraction of 
Observable Peaks (Equation 8.3) that were detected at each threshold level (Figure 8.2).  
Observable peaks are defined as those known peaks with theoretical abundances above 
the threshold level.   

In all cases the allowable mass error of the centroid was ± 2.5 times the intrinsic 
mass spacing of the spectrum (±0.0005 Da0.5).  Duplicate detection events (i.e., where a 

                                                
34  Spectral Signal-to-Noise Estimation.docx 
35  M. Strohalm, Kavan, D., Novák, P., Volný, M., Havlíček, V., “mMass-Open Source 

Mass Spectrometry Tool v5.3.0,” Anal Chem, 82:4648-4651 (2010). 
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secondary noise peak was superimposed near the apex of the known peak) were 
eliminated with the secondary centroid classified as a False Positive detection event.  
False Negative detection events were established based on the failure to detect any 
known peak whose theoretical abundance was above the threshold.  No distinction was 
made between noise being added to the abundance of a peak and adventitious 
detection of pure noise within the mass tolerance of a theoretical peak but not riding on 
the sides or apex of the theoretical peak. 
 

  (8.1) 

  (8.2) 

  (8.3) 

 
Figure 8.2. The Positive Predictive Value (PPV) and False Negative Rate (FNR) 

determined as a function of threshold value.  The threshold value is 
cited in multiples of the estimated noise variance (σ).  One σ implies 
84.13% of the estimated noise is below the detection threshold.  At 2 
and 3 σ, respectively 97.72% and 99.87% of the noise is below the 
threshold.  The Fraction of Observable Peaks (i.e., peaks detected 
versus the known synthetic peaks with abundances above the detection 
threshold) detected at each threshold is also shown. 
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High numbers of false (noise) peaks are detected until the threshold gets high 
enough to clear the inter-peak noise just before the 2σ threshold.  These False Positives 
adversely affect the PPV in this region as well.  These noise peaks sometimes align 
within the mass tolerance of observable peaks that would normally go undetected since 
they were below the detection threshold.  When this happens they are counted as True 
Positives, even though they may really be noise.  These residual noise peaks account 
for the nearly 20% over-detection of theoretical peaks in this threshold region.  While 
perfect PPV is asymptotically approached at thresholds between 4 and 6σ, the false 
negative detection rate is nearly constant (around 10%) at all threshold values.  This is 
because each peak contains some superimposed noise on its sides and apex.  This 
noise can shift the apparent peak outside the mass tolerance window of the theoretical 
observable peak, resulting in a False Positive. Alternatively, if the noise variance is 
below the median baseline, it can lower the measured apex of smaller isotopic peaks 
below the threshold of detection. 

The synthetic spectrum shown above provides a useful demonstration of the 
basic signal-to-noise thresholding technique.  It shows that by statistically eliminating 
increasing amounts of the spectral noise from between 97.7% (2σ) to effectively 100% 
(4σ) that the relative proportion of true peak identifications improves dramatically, with 
little loss of real information content.  However, it is a contrived example where all details 
of the problem are known a priori and accounted for in the solution. 

Application to a Real Spectrum 

In the following example the same principles are applied to a real TOF spectrum.  
This scan (Figure 8.3) was selected randomly from an LC/MS plasma lipidomics run.  
The PeakInvestigator™ approximation of the median baseline was applied (as shown) 
and the spectral noise estimated by reflecting the noise variance calculated below this 
baseline above the baseline. 

A more detailed analysis of the spectrum in different mass regions (Figures 8.4a, 
b, and c) suggests that the bulk of the spectral noise will fall below a 2-4σ S/N threshold.  
However, there are some regions of localized baseline variations that are not adequately 
modeled by the baseline and corresponding s/n threshold near 122 Da (Figure 8.4a), 
788 and 812 Da (Figure 8.4b).  These shorter wavelength localized baseline variations 
are commonly associated with detector saturation events in TOF and ion trap spectra.  
The wavelengths being only slightly longer than that of the peaks, is ignored by the 
PeakInvestigator™ baselining algorithm, which focuses on the longest wavelength 
baseline variations.  Since they are above the baseline they also would not be reflected 
in any S/N threshold. 

By subtracting the baseline, the S/N threshold becomes constant across the 
mass range (Figure 8.3), and the baseline-subtracted spectrum can then be centroided 
by mMass since that algorithm only accepts flat threshold values.  It should be noted, 
however, that the s/n threshold may be variable with m/z in some spectra, but variable 
thresholds are not accommodated in most centroiding software programs.  In this case 
after baseline subtraction a constant threshold can be assumed and mMass centroiding 
was performed on the baseline-subtracted scan with progressive threshold levels 
corresponding to multiples of the standard deviation of the noise variance.  This process 
was repeated for each of the scans immediately preceding and following this center scan 
in the LC/MS series.  Any differences between the actual median noise level and 
associated noise variance between the three scans are thus eliminated and the nσ 
thresholds of each can be directly compared, even if the absolute values of the 
thresholds may be different. 
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(c) 
Figure 8.4. Close-up regions at the low, middle, and high mass ranges of the LC/MS scan 

shown in its entirety in Figure 8.3.  These figures suggest that a signal-to-noise 
threshold between 2 and 4 times the overall noise variance would provide a 
dynamic threshold above the baseline noise over much of the spectrum.  
However in the area of the largest peaks (700 to 900 Da), the local baseline 
appears elevated by detector saturation in these regions.  This localized baseline 
variation is of too small a wavelength to be adequately modeled by the 
PeakInvestigator™ baseline and so is not reflected in the corresponding S/N 
threshold.  The same situation may be seen to a lesser extent near 122 Da in 
Figure 8.4a. 

Peak Identities 

Since the identities and abundances of the species present in these scans are unknown, 
it is necessary to define which centroids will be accepted as real (positive) peaks and which will 
be classified as noise (i.e., negative) peaks.  Within a mass tolerance of ± 3 times the intrinsic 
mass spacing (±  0.0005 Da0.5), all the centroided peaks found within the three consecutive 
scans were identified as positive or negative detection events based on the following criteria: 

• A positive peak results from: 

a) any peak seen in the central scan of the series that is also seen in at least one 
of the adjacent scans at greater than 50% relative abundance (a true positive), 
and 

b) any peak that appears in both adjacent scans but fails to appear in the central 
scan at greater than 50% relative abundance seen in the adjacent scans (a 
false negative). 

• A negative peak results from: 

a) any detected peak in the central scan that can not be confirmed in either 
adjacent scan at greater than 50% relative abundance (a false positive), and 

b) any peak seen in either adjacent scan that is not confirmed in the central scan 
or the other adjacent scan at greater than 50% relative abundance (a true 
negative). 
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The resulting distributions of positive and negative peaks plotted by their centroided 
abundances is shown in Figure 8.5.  As we have seen previously,36 the abundance distributions 
of positive and negative peaks overlap considerably.  The goal of any thresholding algorithm is 
to discriminate between these positive and negative detection events, retaining as many of the 
positive peaks, while discriminating against as many of the negative peaks as possible. 

 
Figure 8.5. The abundance distribution of positive and negative peaks detected by mMass 

centroiding of the PeakInvestigator™ baseline subtracted scan by the criteria 
identified in the text.   

Receiver Operating Characteristic (ROC) Analysis 

Receiver Operating Characteristic (ROC) analysis can be applied to the problem of how 
well a threshold discriminates between two distributions.37  Depending on the threshold value, 
the abundance of any positive peak may be above the threshold and is counted as a true 
positive (TP), or may lie below the threshold value and is counted as a false negative (FN).  
Similarly, the abundance of any negative peak that is above the threshold value is counted as a 
false positive (FP) or is counted as a true negative (TN) when below the threshold value.  
Sensitivity and specificity values are determined for each threshold value from the peak counts 
in these four categories using equations 8.4 and 8.5.  Note, as the threshold is raised, more 
positive peaks will move from TP to FN and negative peaks from FP to TN, suggesting that 
sensitivity will drop and specificity will increase as the threshold rises. 

  (8.4) 
                                                
36 Spectral Baselining.docx 
37 Reciever operating characteristic, https://en.wikipedia.org/ 

wiki/Receiver_operating_characteristic (accessed 21Jul2016). 

Sensitivity =
TP

TP + FN
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  (8.5) 

By plotting the sensitivity against 1-specificity determined for each threshold value, an 
ROC curve is constructed (Figure 8.6).  If no discrimination is seen between the two peak 
distributions the ROC curve would lie on the diagonal between 0,0 and 1,1.  The more 
discrimination that the threshold provides between members of the two distributions, the closer 
the ROC curve will approach the upper left corner (1,0) of the graph.  The area between the 
actual ROC curve and the diagonal is called the area under the curve (AUC) and is a measure 
of the total difference between the two distributions.  The AUC has a maximum value of 0.5 and 
a minimum of zero.  The point of maximum ROC curve deviation from the diagonal is called the 
Youden index and corresponds to that threshold providing the greatest discrimination between 
the two distributions. 

 
Figure 8.6. The Receiver Operator Characteristic (ROC) curves determined for the LC/MS 

scan of Figure 8.3 both with and without baseline subtraction.  In both of these 
curves a flat threshold was applied over the entire spectrum during centroiding to 
generate the ROC curve.  The area under the curve (AUC) shows that only 
37.4% of the positive and negative peaks can be discriminated based on 
abundance alone, after baseline subtraction, and 31.7% without prior baseline 
subtraction.  Youdon Indicies (optimum thresholds) before and after baseline 
subtraction were 10 and 18 counts, respectively. 

The AUC (0.187) from figure 8.6 suggests that only 37.4% of the positive and negative 
peaks (Figure 8.5) can be discriminated using the signal-to-noise threshold after baseline 
subtraction.  A similar ROC analysis of the raw spectrum (centroiding without baseline 
correction) produces an AUC of 0.159, suggesting only 31.7% of the positive and negative 
peaks could be discriminated without any baseline adjustment.  Therefore, baseline correction 
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prior to centroiding yields nearly 18% better signal to noise discrimination. The position of the 
Youden index is at 0.5σ, which corresponds to the optimum s/n threshold level for this 
spectrum.  The obvious remaining question is why does a flat threshold (either s/n or absolute 
counts) produce such poor peak discrimination results even after baseline correction? 

Remaining Detection Issues 
Mid-Frequency Baseline Distortions 

By subtracting the PeakInvestigator™ dynamic baseline the longest wavelength (lowest 
frequency) variation in the baseline is effectively removed from the spectrum providing more 
consistent centroiding results for a flat threshold.  The s/n analysis effectively accounts for the 
shortest wavelength noise variation in the spectrum.  What is left after applying each of these 
corrections is the medium wavelength noise (i.e., that which approaches the inherent peak width 
in wavelength).   

Some of this medium wavelength noise is seen in the baseline distortions around the 
larger peaks in the spectrum (particularly Figure 8.4b).  It is readily seen that the mMass 
centroiding method over-estimates the abundance of those peaks riding on top of the medium-
wavelength baseline distortion in the vicinity of larger peaks (Figure 8.7).  This overestimation of 
peak abundance artificially moves these centroids above the threshold s/n value, causing the 
retention of FP detection events.  When the threshold is raised, TP peaks in regions of the 
spectrum unaffected by detector saturation are then lost as FN events.  Note that the 
abundance distortion in peak intensity in this example exceeds two orders-of-magnitude. 
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Figure 8.7. Centroids (for the optimum 0.5σ s/n threshold) determined for the baseline-
subtracted spectrum of Figure 8.3 for peaks near the most abundant peaks (and 
the regions of baseline distortion these create).  The mMass centroiding method 
is drawing its centroid abundance from the baseline (zero) to the peak apex.  
Because of the localized baseline distortion around the abundant isotopic series 
between 810.5 and 815 Da, what would normally be considered interpeak noise 
is now larger than the threshold and kept in the peak list.  The spectrum is shown 
on a log(abundance) scale to better illustrate the localized baseline distortion of 
over 1000 counts from the baseline. 

Superimposed Noise on Peaks 

Another source of peak detection errors is caused by the superimposition of noise on top 
of the peaks themselves.  The mMass Peak Picking is a standard local-maxima based 
centroiding algorithm based on the first and second derivatives of abundance with m/z.  Any 
putative peak is determined from the local derivative and its abundance (which must exceed the 
flat threshold abundance criterion provided by the user).  The centroid height (peak abundance) 
is drawn from the baseline (zero) through the center of mass of the peak to the interpolated line 
of the spectrum above it.  So any noise on the side of a peak that causes a detectable 
derivative, carries with it the abundance of the underlying peak raising it above the threshold.  
An example is shown in Figure 8.8 (at 136.85 Da) where the noise peak sits on the side of main 
peak (at 136.79 Da).  The Centroid (base to apex is greater than the 1σ threshold applied, but 
the peak height from the extrapolated side of the main peak would be less than that 1σ 
threshold. 

 
Figure 8.8. Centroids determined for the baseline-subtracted spectrum of Figure 8.3 at a 

1σ S/N flat threshold.  The peak detected at 136.85 Da is a False Positive 
created by noise on the side of the peak that is higher than the 1σ S/N 
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Threshold.  The centroid abundance of this peak includes part of the neighboring 
peak upon whose shoulder (dashed line) it rides. 

The two remaining detection issues, then, are:  1) adapting the centroiding algorithm to 
deal with local variations in the spectral baseline of wavelengths approaching that of the peak 
width and 2) creating a centroiding algorithm able to detect and quantitatively deconvolve peaks 
overlapping the sides of other peaks to generate a more appropriate centroid abundance value 
for each deconvolved peak. 

9.  SPECTRAL PEAK CENTROIDING 
At the heart of every mass spectral analysis is the detection, location and quantification 

of the real analyte peaks in the mass spectrum.  These activities are all accomplished as part of 
“centroiding,” which converts the mass spectrum as precisely as possible into a list of peak 
masses and abundances (a “mass list” or “peak list”).  By the classic definition, centroiding is 
the process of determining the center of mass of the detected analyte molecules that are 
dispersed into separate detector bins surrounding the true m/z of the analyte molecule (i.e., the 
“centroid” of the peak).  However, peak centroiding actually consists of three distinct 
mathematical steps:  1) detecting the presence of a peak, 2) determining the center of mass of 
that peak, and 3) quantifying the abundance of that peak. 

Peak Detection 
Finite Difference Calculus 

Basic calculus tells us that a peak in a continuous distribution is characterized by the first 
derivative of that function passing through zero and the second derivative being negative at that 
point.  A mass spectrum can be thought of as a periodically sampled continuous distribution.  
Therefore, finite difference calculus can be used to determine the local first and second 
derivative around any mass point in that spectrum. 

Assuming the peaks are roughly uniform in shape, the central difference equations 
provide the greatest accuracy.  In the simplest case, the first derivative of abundance (Equation 
9.1) and second derivative of abundance (Equation 9.2) can be determined at any mass 
position (m/zi) from the following equations: 
 

  (9.1) 

  (9.2) 

The quality of the finite difference approximation to the actual first and second 
derivatives depends on two assumptions.  The first is that the m/z data is evenly spaced;  
hence, the need for accurate spectral decompression.38  While m/z data is only truly evenly 
spaced in ion trap spectra, the variation in the m/z spacing around any given point is generally 
small enough to be ignored in the above calculation for all other analyzer types.  The second 
assumption is that noise is small relative to the change in signal from point to point in the 
spectrum.  Where the peaks are large, this second assumption is reasonably valid, but as the 
peak abundance starts to approach that of the spectral noise, single points of random noise can 
be easily mistaken for real peaks.  Conversely, nearly isobaric partially overlapped peaks can 
be ignored if their abundance is low relative to that of their nearly isobaric neighbor. 
                                                
38 Spectral Data Compression and Decompression.docx 
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We can see the effect of noise on finite difference peak detection in Figure 9.1.  Here we 
have a synthetic TOF spectrum of an isolated 500-count peak with superimposed random noise 
of between 0 and 30 counts.  The first and second derivatives for each of the members of this 
series are shown as are the resulting centroids.  Noise superimposed on the tailing edge of the 
main peak is detected as additional peaks above the threshold value. 

 
Figure 9.1. Finite difference peak detection applied to a synthetic baseline-subtracted TOF 

spectrum of a singly-charged 500-count monoisotopic peak with superimposed 
random noise of between 0 and 30 counts.  The centroiding threshold was set at 
1σ (15 counts over baseline).  The resulting centroids are shown. 

The obvious and traditional solution to this inherent problem of false positive detection 
using finite difference centroiding is to smooth the spectrum.  We have independently presented 
arguments against spectral smoothing as applied to baselining in that all such techniques are:  
1) intrinsically data destructive and 2) require the specification of at least one user-adjustable 
parameter.39  However, they present the only solution to the false positive peak detection 
problem inherent in the finite difference method for peak detection.  Smoothing techniques and 
their limitations are discussed separately.40 

Apex Finding 

                                                
39 Spectral Baselining.docx 
40 Spectral Smoothing.docx 

0

200

400

600

800

1000

-2 106

-1.5 106

-1 106

-5 105

0

5 105

239.08 239.09 239.1 239.11 239.12 239.13

Baseline-
subtracted
Counts
Centroids

1st Derivative

2nd Derivative

Ba
se

lin
e-

su
bt

ra
ct

ed
 C

ou
nt

s
D

erivatives

m/z (Da)



 

© 2016 Veritomyx, Inc., All Rights Reserved 58 

A second approach to peak finding is to start at the most abundant apex in the spectrum 
and work downward until the threshold is reached.  However, a mass spectrometric peak is 
wider than a single mass point.  Hence, the mass points leading up to any apex may also be 
higher than the apexes of other peaks in the spectrum.  Therefore, this peak detection method 
necessarily must be accompanied by some concept of the general width or shape of a peak, to 
preclude multiple imperfect detections of the same peak in the mass list by blocking the 
selection of another apex from some mass range around each apex already called.   

Alternatively, the highest abundance actual mass point next to a peak determined by 
finite difference methods can be chosen as the mass and abundance apex.  Since the true peak 
may fall between two mass points, the best mass resolution for apex picking is the ± distance 
between the neighboring m/z points in the spectrum.  Where nearly isobaric peaks overlap, a 
peak model or width guide used to block multiple detections of the same peak may also block 
the detection of a partially overlapped neighboring peak. 

Accurate Peak Mass Determination 
Center of Mass (Traditional Centroiding) 

The center of any object can be defined mathematically by least squares fit of the 
distances from each sampled position on the surface of that object measured to a common 
center point (Equation 9.3).  This is illustrated in Figure 9.2.  One user-specified variable in this 
calculation is which sampled points should be used in the objective function.  It is common to 
use only those points within some abundance of the apex since the larger the abundance 
associated with any mass point, the less the effect spectral noise should have on this 
calculation.  In the absence of spectral noise with a perfectly symmetrical peak (e.g., a 
Gaussian) the center of mass would be the same no matter which points are used for its 
calculation.  The more asymmetrical the peak shape, however, the more the centroiding 
abundance cutoff will affect the precision of the center of mass calculation (Figure 9.2). 
 

  (9.3) 

Many variations on this basic approach are possible.  For example if only 4 points are 
used, the resulting system of simultaneous equations and be solved explicitly.41  Alternatively, 
abundance weighted moments of the points can be used to give more weight to the higher 
abundance values.42 

The challenge in this approach is defining what is part of a peak and what is not.  The 
presence of any overlapped nearly isobaric peaks will skew the center of mass calculation with 
this method unless there is a way to determine where the second peak starts (e.g., finding a 
trough between two peaks).   

Even with a known isolated peak, as shown in Figure 9.2, even small peak asymmetries 
can cause variations in the center mass, depending on which points are used in the centroiding 
objective function.  Therefore, it is typically important to re-calibrate the masses of the centroids 
after centroiding and to use a consistent cutoff (% of apex height) to centroid all peaks in a 
spectrum. 
                                                
41  MZmine Development Team, MZmine 2.3 User Manual, Exact Mass Calculation, pg. 19 

(2011), http://mzmine.sourceforge.net/manual.pdf (accessed Oct, 10, 2016). 
42 Agilent Technologies, Mass Accuracy and Mass Resolution in TOF MS, pg. 13 (Oct, 2011), 

http://www.agilent.com/cs/library/eseminars/public/Mass%20Accuracy%20and%20Mass%2
0Resolution%20-%20October%202011.pdf (accessed Oct, 10, 2016). 
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Figure 9.2. Determination of the center of mass of a mass spectral peak using all points 

within 30% of the peak apex abundance and all within 80% of the apex 
abundance.  Note, the calculated center of mass shifts by 2 ppm between these 
two point selections because the peak shape is asymmetrical. 

Fitting of Peak Models 

An alternative to classical centroiding is to define a model peak that is fit to the spectrum 
at each spectral apex.  Usually a Gaussian43, 44 peak shape model is used, but other model 
distributions can also be applied. 45   Consistent instrument-specific deviations from the model 
distribution can also be calculated and added to the core peak shape model to improve the 
quality of the fit where necessary.46  A major benefit of this approach is that spectral noise is 
effectively averaged out by the model fitting process.  Both mass and abundance are 
determined simultaneously when the model is successfully fit to the experimental peak. 

                                                
43 Wang, Y., Methods for operating mass spectrometry (MS) instrument systems," US6,983,213 

(3 Jan 2006). 
44 Hall, M. P. et al., "Mass defect tags for biomolecular mass spectrometry," J. Mass Spectrom., 

38:809-816 (2003). 
45 Leopold, P. et al., "Peak shape self-modeling for low abundance analytes in complex 

mixtures," http://www.positiveprobability.com/POSTERS/2006Modelling.pdf 
46 Wang, Y., “Methods for operating mass spectrometry (MS) instrument systems," US6,983,213 

(3 Jan 2006). 
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The primary disadvantage of this approach is that an appropriate peak model (or 
characteristic deviation from a known model)47 must be determined for the spectrum of interest.  
This can be exceptionally difficult where the peak shape varies with m/z as in all mass analyzer 
types except ion trap.  Even in ion trap analyzers the peak shape depends on the time spent in 
the trap (i.e., becomes narrower at longer trap retention times).  Any change in instrument 
tuning parameters or analyzer mass range also forces changes to be made in the peak model.  
Therefore, if the model is drawn from the spectrum itself, it must be based on well-isolated 
training peaks within a narrow m/z range of the target peak to which it is applied for centroiding. 

This still leaves the issue of where to apply peak models to the spectral data (i.e., peak 
detection discussed above).  One approach is to start at the most abundant apex and work 
downwards until the threshold of detection is reached.  If the peak model adequately explains 
the peak it can be subtracted from the spectrum with minimal residual (i.e., the residual error is 
less than the threshold specified).  The next highest apex in the residual spectrum is then fit with 
the model, the model subtracted and this process repeated, until there are no longer any 
residuals above the spectral threshold.  While computationally laborious, the basic principle 
appears sound on the surface.   

Problems arise, however, when there is more than one nearly isobaric peak near the 
apex forcing the experimental peak to deviate from the peak model, or the single peak shape 
model does not adequately explain the observed peak shape and leaves a residue higher than 
the threshold, which becomes a false positive detection on a subsequent pass.  Overlapping 
peak abundances are additive, so the presence of a partially-overlapping, nearly-isobaric, side 
peak increases the apparent abundance at every mass point of overlap, and alters the center of 
mass of any peak with which it overlaps.  In the presence of such a peak overlap, the first peak 
model fit to the highest apex will carry both a mass error and abundance overshoot.  After 
subtraction of the first fitted peak model, the resulting residual peak(s) will also exhibit shifted 
center(s) of mass, and its (or their) abundance(s) will then be under-estimated by fit of the 
second model.  This is illustrated in Figure 9.3.

                                                
47 Wang, Y., Methods for operating mass spectrometry (MS) instrument systems," US6,983,213 

(3 Jan 2006). 
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The method of fitting the model to the spectrum is also an important decision.  The 
observed experimental mass points may straddle the actual center of mass position, so the 
observed peak apex may not be co-located with the centroid.  Each peak in the spectrum also 
has a unique abundance associated with its centroid, which is not simply the highest observed 
point in the experimental peak, but must be determined during model fitting.  So, optimization of 
the model fit must allow both mass and abundance shifts of the model, typically through 
minimization of the least squared residual error of all the abundances that make up the rising 
and falling edges of the peak.  The model abundances must be recalculated at each measured 
mass point every time the mass position of the model is shifted.  Then there is the problem of 
which experimental and model points to use in the optimization.  Should the data used in the 
least squared error calculation be limited to the width of the model peak or to those above the 
S/N threshold?  For the same average noise level, there is a higher percentage abundance 
error in experimental mass points that are close to the threshold than for mass points that are 
higher in abundance; therefore, should the former be discounted or eliminated from the least 
squares objective function of the optimization?  Since noise error is always additive to the peak, 
should just the positive residuals be included in the objective function and the negatives 
ignored?  There is no clear and unambiguous guidance in the literature to answer these 
questions. 

More importantly, how should the model fitting algorithm decide when more than one 
model should be fit to a given peak (as in the example of Figure 9.3B)?  Where two or more 
nearly isobaric peaks are known or suspected, the number of models to apply could be 
specified by the user, as in MassWorks™ (Cerno Bioscience, Norwalk, CT); however, this 
cannot be automatically applied to unknown peaks without some goodness of fit criteria being 
used to justify the addition of another peak model. 

This brings us to the problem of when to stop a serial model peak-fitting process.  As 
discussed previously,48 noise is always additive in mass spectrometry.  Standard (parametric) 
statistical methods (e.g., goodness-of-fit ANOVA or χ2) cannot be applied to this problem, as 
they produce random variations in the p-score as subsequent peaks are added to the fit.  In the 
example of Figure 9.3b, the two model fit to the overlapped peak pair at 201 Da generates a 
lower residual error than the single model fit and is better aligned with the theoretical masses 
and abundances, but the goodness-of-fit ANOVA p-score of the two model fit is higher than that 
of the single model fit.  Yet, adding a third model to the fit improves the p-score over that of 
either the single or two model fits, even though there is little improvement in the residual error 
over the two model fit.  The underlying problem is that experimental peaks are either over-fit or 
under-fit by model peaks because of the superimposed one-sided spectral noise.  The standard 
goodness-of-fit ANOVA implicitly assumes that the noise is evenly distributed across both sides 
of the model curve, when the reality is that it is distributed only to one side.  Therefore, standard 
parametric statistical methods fail to reliably optimize the number of partially-overlapped peak 
model fits.  Furthermore, unless a limit is placed on the number of simultaneous models applied 
to a particular apex, smaller and smaller model peaks will continue to be added to the same 
peak until all the spectral noise above the threshold of detection is completely modeled. 

Another approach is to insert a single peak model at every mass point above the 
threshold in the spectrum, and not allow these models to move in the mass dimension. The 
resulting over-specified sparse matrix of simultaneous equations can then be solved for the 
global least squares height of all the models, and all those models with optimized heights less 
than the threshold eliminated as noise.  The remaining model heights are then re-optimized in 
both the mass and abundance domains.  This approach creates a massive n x m matrix 
optimization process, where n is the total number of mass points in the spectrum file and m is 

                                                
48 Spectral Characteristics.docx 
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the number of non-zero abundance points in the spectrum file (i.e., m models).  Furthermore, 
this process results in loss of mass precision since the closest that the centroid of any model 
can get to the true mass is ± the intrinsic mass spacing of the spectrum at that mass position.  
In a typical mass spectrum, peaks are only 5-7 mass bins wide, so the mass accuracy of this 
method is effectively limited to 1/5 to 1/7 of the spectral peak width, which would constitute an 
unacceptable reduction in mass resolution.  Furthermore, where the true measured peak apex 
falls between two experimental mass points, this method has a tendency to fit two models of 
half height into the spectrum at that peak. 

The challenges posed by peak model fitting have greatly inhibited its adoption, and finite 
difference peak detection methods continue to prevail as the method of choice in almost all 
spectral centroiding software packages. MassWorks™ (Cerno Bioscience, Norwalk, CT), which 
continues to apply a modified-Gaussian peak model fitting strategy, is the only commercial 
exception noted at this writing. 

Abundance Quantification 
Continuum Spectrum Intersection 

Once a center of mass has been determined for a peak, there are two basic options for 
determining its abundance.  The simplest option is to draw a vertical line from the baseline (or 
threshold) up to where it intersects the spectrum (or smoothed spectrum).  If another partially-
overlapped nearly isobaric peak is present, the abundance of both peaks will be over-estimated 
by this method.  This can be easily visualized in Figure 9.3B, where the true heights of the 
overlapped nearly isobaric peaks are shown, but if these were correctly detected by the 
centroiding algorithm, then a line drawn to intersect the spectrum at each mass would 
overestimate each of the peak abundances by about 50%. 

Peak Area 

An alternative approach is to estimate the area contained under the peak and use this as 
the abundance.  This has an advantage in detecting the presence of partially overlapped ions in 
an isotopic pattern since the members of the isotopic series will not display the expected ratios if 
overlapped by another nearly isobaric species.  However, the challenge here is how to define 
the ends of a peak.  Is it where the peak intersects the threshold?  If so, what happens when the 
trough between to neighboring peaks is elevated above the threshold due to the overlap?  Such 
troughs can be found by finite difference calculus as positioned where the first derivative goes to 
zero and the second derivative is positive.  However, this simple boundary test fails to function 
when the peak asymptotically approaches a constant baseline.  This problem is common to that 
experienced by every chromatographer in trying to determine the proper limits of analyte peaks, 
and for which there has never been a fully satisfactory automated solution. 

Use of Model Peaks 

Where multiple peak models are fit to an experimental peak (e.g., Cerno MassWorks™), 
the combined overlap may more effectively deconvolve the correct abundances of each of the 
overlapped peaks versus the abundance results from standard centroiding.  As discussed 
previously, however, this assumes:  1) that the peak model is a good approximation of the peak 
shape; and  2) that the number of overlapping peaks is known with certainty.  The additive 
composite of the multiple peak models is fit to the spectrum, so regions of spectral overlap are 
not counted twice.  For the example of Figure 9.3, fitting a pair of the Gaussian peak models 
from 205 Da  (Figure 9.3a) to the known peak pair at 201 Da (Figure 9.3b) results in one peak 
disappearing to zero counts and the other peak centering to become the Figure 9.3b result.  
Constraining both peaks to a minimum counts of 240 yields the results of Figure 9.4, where the 
mass error for the first peak is 33 ppm and the abundance of that peak hits the 240 count 
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constraint.  Fitting multiple peaks is very difficult because the non-linearity of the model creates 
lots of local minima.  

 
Figure 9.4. The synthetic spectrum of Figure 9.3b with two Gaussian models fit 

simultaneously to the known nearly isobaric overlapped peak pair at 201 Da. 

PeakInvestigator™ 
The rapidly increasing volume and importance of mass spectrometry in analytical 

chemistry and the life sciences (including medical research and clinical diagnostics) have 
created a need for a more automated and robust method to convert raw profile mass spectral 
data into accurate mass lists for further processing.  Such a new approach has been developed 
by Veritomyx, Inc. and is accessed via their PeakInvestigator™ software services.  
PeakInvestigator treats the raw mass spectrum as a periodically-sampled continuous signal and 
uses a proprietary self-trained algorithm to identify and quantify the features of that signal with 
statistically-measurable precision.  The advantages of this approach are:  

• no user-adjustable parameters 

• fully-automated and locally-adaptive baselining and statistically-determined 
S/N thresholding for optimized sensitivity above background noise 

• reproducible and more precise masslists 

• fully-automated spectral detection and deconvolution of nearly isobaric 
overlapped peaks, effectively providing up to four times the spectral 
resolution of the native mass analyzer 

• statistical confidence (error bars) defined for the mass and abundance result 
on every peak reported. 
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While the algorithms are proprietary, it is possible to compare the results to the 
alternatives described above. 

Lipidomics Study 

In an LC/MS/MS lipidomics experiment49, human plasma samples from a diabetes study 
were analyzed at 10K resolution on an Agilent 6530 and with their standard centroiding 
software.  An overlapped set of peaks were detected in the MS1 spectrum only after tandem MS 
analysis of the peak and confirmation by re-running the sample on a 100K resolution LECO 
Citius instrument.  The peaks were found to correspond to phosphatidylethanolamine (36:2) and 
plasmenol-phosphatidylcholine (P34:1).  These two nearly isobaric species were unresolved by 
standard centroiding methods in any of the 10K resolution MS scans in the entire study.1  Nor 
could they be resolved chromatographically since they were nearly co-eluting.  The relevant 
LC/MS scans for over 100 patients were provided to Veritomyx for PeakInvestigator analysis.  
The PeakInvestigator software was able to blindly detect and deconvolve both peaks (Figure 
9.5) in scans for 98% of the patients, allowing them to finally be resolved chromatographically 
(Figure 9.6).  Not only did PeakInvestigator correctly identify and deconvolve the peak pair in 
question, but it also found an additional 40 previously undetected pairs of nearly-isobaric peak 
overlaps within the same samples, yielding a remarkable and unanticipated new discovery rate 
opportunity.   

 

                                                
49  PeakInvestigator™ Deconvolution & Centroding Software:  UC Davis Beta Collaboration-

Phase 1, https://veritomyx.box.com/s/v15u85f4b47nyge71nq7bnxe4zy7dwul (Accessed 
9/15/16). 
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Figure 9.6. Results of standard centroiding (Exact Mass in MZmine) versus PeakInvestigator 

centroiding of the two nearly-isobaric peaks from each of the 20 LC/MS scans in 
which either component eluted.  The reported mass of the standard centroid 
(Panel 6B) is seen to decline with increasing scan number as first one 
component and then the other dominates the peak found.  Versus the two 
masses deconvolved and reported by PeakInvestigator, the mass offset of the 
standard centroiding result is caused by the asymmetry of the peak shape 
(Figure 9.5) as discussed in the text.  Each component is correctly isolated by 
PeakInvestigator with little overall mass drift.  The corresponding abundance 
chromatograms (Panel 6A) show the quantitative precision of PeakInvestigator 
across the changing dynamic range of these two peaks.  PeakInvestigator is 
uniquely able to provide both mass and abundance error bars (indicated).  It 
should be noted that error bars less than the sampling spacing of the profile 
spectrum are effectively zero since the minimum mass tolerance of the 
PeakInvestigator method is the intrinsic mass spacing of the spectrum 
(discussed further in the text). 
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Nearly Isobaric Admixtures 

The following two admixtures of nearly-isobaric chemicals were prepared and analyzed 
by ESI Q-TOF (Agilent 6550) at 20K resolution and by Q Exactive Plus Orbitrap at 100K 
resolution.50  The spectra were acquired both in raw format and in centroid mode on the Agilent 
instrument.  The Agilent raw spectra were re-analyzed with Exact Mass standard centroiding 
(MZmine v2.0) and by PeakInvestigator.  

The first admixture contained two components differing in mass by 90 ppm: 

• 4-Imidazole acetic acid (C5H7N2O2+ - [M+H+] = 127.050752 Da) 

• 5-Aminoimidazole-4-carboxamide (C4H7N4O+ - [M+H+] = 127.061986 Da) 
 
These results are summarized in Figure 9.7.  Panel A shows the acquisition in centroid mode on 
the Agilent 6550, which produced a single centroid and an extraneous noise peak.  Reanalysis 
using exact mass (Panel B) produced two standard centroids differing by just 93 ppm (a 3 ppm 
precision variance).  However, the relative abundances of the two peaks were within 16% of 
each other because they were drawn from zero until they intersected the spectrum curve.  This 
varies greatly from the 70% relative abundance difference seen in the fully-resolved Orbitrap 
spectrum (Panel D).  The PeakInvestigator result (Panel C) also deconvolved the two peaks 
with 92 ppm difference (a 2 ppm precision) and deconvolved the relative abundances of the two 
species to a relative abundance difference of 67%, very close to the 70% difference found in the 
Orbitrap result (Panel D). 

The second admixture contained three components differing in mass by 65 and144 ppm, 
respectively: 

• N-Acetyl-L-ornithine (C7H15N2O3+ - [M+H+] = 175.108267 Da) 

• L-Arginine (C6H15N4O2+ - [M+H+] =175.119501 Da) 

• Ne,Ne+dimethyllysine (C8H19N2O2+ - [M+H+] = 175.144653 Da) 
 
These results are summarized in Figure 9.8.  Panel A again shows the acquisition in centroid 
mode on the Agilent 6550, which detected the second two of the three peaks at the correct 144 
ppm mass tolerance.  However, the relative abundances of these two peaks were reversed from 
that of the Orbitrap result because of the added contribution of the first component to the 
relative abundance of the second peak from which it was not resolved.  Panel B again shows 
the Exact Mass result from the raw spectrum, with only the second two peaks being resolved by 
standard centroiding.  In this case the mass difference between the two peaks was 147 ppm (a 
7 ppm precision error) and the relative abundances of the two detected peaks were again 
reversed because of the added contribution of the first component counts that were unresolved 
from the second peak.  PeakInvestigator resolved all three peaks (Panel C) with mass 
differences of 64 ppm for the first two peaks (a 1 ppm precision error) and a 142 ppm mass 
difference for the second two peaks (a 2 ppm mass precision error).  The abundances of the 
three peaks were also much closer to that seen in the fully-resolved Orbitrap result (Panel D). 

 

                                                
50  PeakInvestigator™ Deconvolution & Centroiding Software, Stanford Beta Collaboration, 

https://veritomyx.app.box.com/s/u14tsrsrg36xrie1okotpi9sdqv03zzg (Accessed 9/15/16). 
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Peptide Abundance in Orbitrap 

By determining the rate of stable isotope incorporation into proteins, (or their 
constitutive peptides) the rate of protein synthesis in cellular systems can be estimated.  
In such studies, it is critically important to use the full isotopic abundance of the peptides, 
yet often multiply-charged states of these peptides can overlap and remain unresolved 
from one another making it difficult to get an accurate measurement of all the members 
of the isotopic pattern.  In the following scan (Figure 9.9) we see the overlap of such 
tryptic peptides.  Peptide1 consists of a doubly charged species of a peptide of the 
nominal [M+H+] composition C39H62N11O12.  Peptide2 consists of the triply-charged 
species of a peptide of the nominal [M+H+] composition C58H93N17O17S1.  The 13C2 peaks 
of both peptides are nearly isobaric in this 30K resolution Orbitrap spectrum.  Standard 
centroiding (Exact Mass in MZmine) fails to independently resolve these two species, 
but PeakInvestigator does quantitatively resolve the isotopic pair. 

 
Figure 9.9. Overlapped second 13C isotopes of two peptides in an 30K resolution 

Orbitrap mass spectrum are not detected by standard centroiding, but 
are blindly and quantitatively deconvolved by PeakInvestigator.  
Peptide1 has the nominal composition C39H62N11O12.  Peptide2 has the 
nominal composition C58H93N17O17S1.  The isotopic vector angles for 
each peptide compared to their theoretical patterns obtained from 
standard centroiding (where the overlap is unresolved) show a 32.8% 
and 19.9% errors respectively.  PeakInvestigator quantitatively resolves 
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these peaks improving the isotopic vector angle errors to 22.6% and 
7.8%, respectively. 

In stable isotope labeling experiments like these, Isotopic Vector Angle Analysis51 
is used to compare the centroided abundances to those expected from theory, 
effectively incoporating the relative abundances of all members of the isotopic series.  In 
this case PeakInvestigator™ provides an average of 46% better isotopic match for these 
two peptides than could be obtained by standard centroiding methods. 

Peak Error Bars 
The statistical nature of the PeakInvestigator peak finding algorithms enables the 

estimation of both mass and abundance error bars for every peak found.  These error 
bars are derived with statistical confidence.  The reported values are ±1σ (68% 
confidence) and can be multiplied by the appropriate 2-tailed Student's t-value for the 
statistical degrees of freedom reported for each peak  to get estimates for the statistical 
confidence intervals.,52. 

Mass Precision 

Unfortunately, the mass spectrum is a sampled distribution in the mass domain.  
Therefore, there is a lower limit to the measured mass precision (i.e., effectively, the 
PeakInvestigator algorithm's intrinsic “Nyquist rate”53), which is one intrinsic mass 
spacing.54  It should be remembered that the units of the intrinsic mass spacing of any 
mass spectrum are not expressed in units of mass (except for ion trap) but are related to 
mass by simple mathematical relations.  Therefore, the minimum mass precision of any 
PeakInvestigator peak is the mass equivalent of the intrinsic mass spacing of the 
spectrum or the confidence limit, whichever is larger. 

Abundance Precision 

Abundance measurements are effectively continuous in a mass spectrum, but 
are often reported as integer equivalents.  Therefore, the abundance error bar reported 
can only be as accurate as the least significant figure used to report counts.   

Some recent AB/Sciex TOF analyzers use dynamic ion throttling to control ion 
flow to the detector to prevent detector saturation.  The corresponding mass spectrum is 
automatically scaled by the ratio to which the ion stream has been throttled so that 
continuity in abundance across the series of autoscaled spectra is maintained.  This 
process can make the minimum abundance error in any given spectrum a multiple of the 
normal integer count spacing.  Therefore, some care must be taken in applying the 
PeakInvestigator error bars to spectra of this type, since the intrinsic precision limit may 
be something other than a single significant figure and will vary from scan to scan in an 
LC/MS run on automated ion-throttled mass analyzers. 

 

                                                
51  Sokkalingam, N., Schneider, L., Tenderholt, A., Chu, F., Corillo, Y. E., Marshall, 

A.G., Deconvolution and isotopic vector analysis for improved peak identification. 
Poster presented at: 64th Annual Am. Soc. Mass Spec., 2016 June 5-9; San 
Antonio, TX, 
https://veritomyx.app.box.com/s/bm7xuw54mplgujdt4eojakybwnx9kodb (accessed 
9/27/2016). 

52  Confidence intervals, https://en.wikipedia.org/wiki/Confidence_interval. 
53  Nyquist frequency, https://en.wikipedia.org/wiki/Nyquist_frequency. 
54  Spectral Characteristics.docx. 
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Deconvolution Resolution 
Mass spectral resolution is often defined by the mass of a peak divided by the 

width of that peak at half the peak height in Da (Equation 9.4).  Therefore, resolution is a 
dimensionless number.  It is similarly possible to define the ability of any centroiding 
process to correctly discriminate any two peaks in a mass spectrum, as the ratio of the 
the average mass of the two peaks divided by the mass difference between the two 
peaks (Equation 9.5).  We can call this the Discrimination Resolution.  As the distance 
between the two peaks becomes negligible approaching the mass of a single peak at the 
average mass position, this analysis can be taken one step further to define another 
dimensionless number, Deconvolution Resolution.  The Deconvolution resolution is 
defined as the ratio of the discrimination and spectral resolution numbers (Equation 9.6).  
This, of course reduces to the actual mass difference between any two peaks divided by 
the width of an isolated peak in the spectrum at half its height, where the average mass 
is the same as the mass used in the spectral resolution calculation. 

  (9.4) 

  (9.5) 

  (9.6) 

                                                      
Deconvolution Resolution represents the relative spacing between peaks in any 

mass spectrometer.  As the resolution of the mass spectrometer increases, its ability to 
resolve two peaks becomes greater, yet the relative overlap of those two peaks 
maintains a constant deconvolution resolution (Figure 9.10).  Any mass spectrometer 
can just begin to resolve two peaks of the same height at a deconvolution resolution of 
1, where there is the beginning of a trough between the two peaks.  It can easily resolve 
peaks with lower deconvolution resolutions.  The ability to deconvolve two peaks at 
deconvolution resolutions above one is entirely dependent on the peak picking or 
centroding software. 

 

Spectral Resolution =
peak mass (Da)

peak widthhalf�height (Da)

Discrimination Resolution =
average peak mass (Da)

|peak1 mass � peak2 mass| (Da)

Deconvolution Resolution =
Discrimination Resolution

Spectral Resolution

=
peak widthhalf�height (Da)

|peak1 mass � peak2 mass| (Da)
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Figure 9.10. The progressive overlap of two peaks as a function of Deconvolution 

Resolution, a dimensionless variable that quantifies the degree of 
overlap for adjacent peaks in mass spectrometer outputs at any 
resolution.  

If we evaluate the different centroiding methods presented above on their abilities 
to blindly detect and deconvolve any two overlapped peaks on the continuum of 
Deconvolution Resolution, we find that classic finite difference centroiding and peak 
model fitting (using finite difference methods to locate the peaks as implemented by 
Cerno Massworks™) have limiting deconvolution resolutions of approximately one 
(Figure 9.11).   

When more than one peak is known (or suspected) at any given mass position, it 
is possible to guide Cerno Massworks™ to a higher limiting deconvolution resolution, but 
this can not be achieved on a blind basis as automatically delivered in PeakInvestigator.  
A limiting decovolution resolution of one corresponds to the point where the “saddle” or 
trough between overlapping peaks is approaching the point of disappearance (Figure 
9.10).   

PeakInvestigator multiplies and extends the limiting deconvolution resolution up 
to four-fold over the current centroiding techniques discussed above, for peaks with 
strong signal to noise ratios.  PeakInvestigator outperforms the other centroiding 
methods for all peaks down to a signal to noise of 10 for any relative abundance of the 
overlapped peak heights. 
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Figure 9.11. The Limiting Deconvolution Resolution of PeakInvestigator and 

standard centroiding methods, as a function of dynamic range of 
overlapped peaks and signal-to-noise levels.  The true Limiting 
Deconvolution Resolution is between the solid and open symbols at 
each condition because it can not be measured any finer than the 
known spacing between peaks in alternative test spectra. 

 


	Mass Spectral Data Processing
	Mass Spectral Data Processing.2
	Mass Spectral Data Processing.3
	Mass Spectral Data Processing.4
	Mass Spectral Data Processing.5
	Mass Spectral Data Processing.6
	Mass Spectral Data Processing.7
	Mass Spectral Data Processing.8
	Mass Spectral Data Processing.9
	Mass Spectral Data Processing.10
	Mass Spectral Data Processing.11
	Mass Spectral Data Processing.12
	Mass Spectral Data Processing.13
	Mass Spectral Data Processing.14
	Mass Spectral Data Processing.15

